[1] Fourier, J. B. J. Théorie Analytique de la Chaleur, Didot, Paris (1822)
[2] Fick, R. On liquid diffusion. Journal of Membrane Science, 100, 33-38(1995)
[3] Cattaneo, C. Sulla conduzione del calore. Atti Semin Mat Fis University Modena Reggio Emilia, 3, 83-101(1948)
[4] Christov, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481-486(2009)
[5] Ciarletta, M. and Straughan, B. Uniqueness and structural stability for the Cattaneo-Christov equations. Mechanics Research Communications, 37, 445-447(2010)
[6] Straughan, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95-98(2010)
[7] Li, J., Zheng, L., and Liu, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects. Journal of Molecular Liquids, 221, 19-25(2016)
[8] Abbasi, F. M., Shehzad, S. A., Hayat, T., Alsaedi, A., and Hegazy, A. Influence of Cattaneo- Christov heat flux in flow of an Oldroyd-B fluid with variable thermal conductivity. International Journal of Numerical Methods for Heat & Fluid Flow, 26, 2271-2282(2016)
[9] Waqas, M., Hayat, T., Farooq, M., Shehzad, S. A., and Alsaedi, A. Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. Journal of Molecular Liquids, 220, 642-648(2016)
[10] Sui, J., Zheng, L., and Zhang, X. Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. International Journal of Thermal Sciences, 104, 461-468(2016)
[11] Swati, M. M. Golam, A. M., and Wazed, A. P. Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction. Chinese Physics B, 22, 124701(2013)
[12] Shehzad, S. A., Alsaedi, A., and Hayat, T. Hydromagnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux. PLoS One, 8, e68139(2013)
[13] Ramesh, G. K. and Gireesha, B. J. Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles. Ain Shams Engineering Journal, 5, 991-998(2014)
[14] Hsiao, K. L. Conjugate heat transfer for mixed convection and Maxwell fluid on a stagnation point. Arabian Journal of Science and Engineering, 39, 4325-4332(2014)
[15] Hayat, T., Shehzad, S. A., and Alsaedi, A. MHD three-dimensional flow of Maxwell fluid with variable thermal conductivity and heat source/sink. International Journal of Numerical Methods for Heat & Fluid Flow, 24, 1073-1085(2014)
[16] Liu, Y. and Guo, B. Coupling model for unsteady MHD flow of generalized Maxwell fluid with radiation thermal transform. Applied Mathematics and Mechanics (English Edition), 37(2), 137- 150(2016) DOI 10.1007/s10483-016-2021-8
[17] Cao, L., Si, X., and Zheng, L. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles:Lie group analysis. Applied Mathematics and Mechanics (English Edition), 37(4), 433-442(2016) DOI 10.1007/s10483-016-2052-9
[18] Zhao, J., Zheng, L., Zhang, X., and Liu, F. Convection heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects. International Journal of Heat and Mass Transfer, 103, 203-210(2016)
[19] Zhao, J., Zheng, L., Zhang, X., and Liu, F. Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate. International Journal of Heat and Mass Transfer, 97, 760-766(2016)
[20] Hsiao, K. L. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Applied Thermal Engineering, 112, 1281-1288(2017)
[21] Chiam, T. C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet. Acta Mechanica, 129, 63-72(1998)
[22] Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Higher Education Press, Beijing (2012)
[23] Turkyilmazoglu, M. Solution of the Thomas-Fermi equation with a convergent approach. Com- munications in Nonlinear Science and Numerical Simulations, 17, 4097-4103(2012)
[24] Han, S., Zheng, L., Li, C., and Zhang, X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematics Letters, 38, 87-93(2014)
[25] Abbasbandy, S., Hayat, T., Alsaedi, A., and Rashidi, M. M. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. International Journal of Numerical Methods for Heat & Fluid Flow, 24, 390-401(2014)
[26] Shehzad, S. A., Hayat, T., Alsaedi, A., and Ahmad, B. Effects of thermophoresis and thermal radiation in mixed convection three-dimensional flow of Jeffrey fluid. Applied Mathematics and Mechanics (English Edition), 36(5), 655-668(2015) DOI 10.1007/s10483-015-1935-7
[27] Hayat, T., Muhammad, T., Shehzad, S. A., and Alsaedi, A. Three-dimensional boundary layer flow of Maxwell nanofluid:mathematical model. Applied Mathematics and Mechanics (English Edition), 36(6), 747-762(2015) DOI 10.1007/s10483-015-1948-6
[28] Shehzad, S. A., Abbasi, F. M., Hayat, T., and Ahmad, B. Cattaneo-Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 37(6), 761-768(2016) DOI 10.1007/s10483-016-2088-6
[29] Hayat, T., Shafiq, A., Alsaedi, A., and Shahzad, S. A. Unsteady MHD flow over exponentially stretching sheet with slip conditions. Applied Mathematics and Mechanics (English Edition), 37(2), 193-208(2016) DOI 10.1007/s10483-016-2024-8
[30] Hayat, T., Imtiaz, M., and Alsaedi, A. Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 37(5), 573-582(2016) DOI 10.1007/s10483-016-2072-8
[31] Hayat, T., Muhammad, T., Shehzad, S. A., and Alsaedi, A. Three dimensional rotating flow of Maxwell nanofluid. Journal of Molecular Liquids, 229, 495-500(2017)
[32] Meraj, M. A., Shehzad, S. A., Hayat, T., Abbasi, F. M., and Alsaedi, A. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Applied Mathematics and Mechanics (English Edition), 38(4), 557-566(2017) DOI 10.1007/s10483-017-2188-6 |