[1] Gaitonde, D. V. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 72, 80-99(2015)
[2] Chapman, D. R., Larson, H. K., and Kuehn, D. M. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NASA Technical Reports, NASA, United States (1957)
[3] Stewartson, K. and Williams, P. G. Self-induced separation. Proceedings of the Royal Society of London, A312, 181-206(1969)
[4] Neiland, V. Y. Theory of laminar boundary layer separation in supersonic flow. Fluid Dynamics, 4, 33-35(1972)
[5] Adamson, T. C. and Messiter, A. F. Analysis of two-dimensional interactions between shock waves and boundary layers. Annual Review of Fluid Mechanics, 12, 103-138(1980)
[6] Roy, J. C. and Blottne, G. F. Review and assessment of turbulence models for hypersonic flows. Progress in Aerospace Sciences, 42, 469-530(2006)
[7] Settles, G. S. and Dodson, L. J. Hypersonic shock/boundary layer interaction database. NASA Technical Reports, NASA, United States (1991)
[8] Knight, D., Yan, H., Panaras, A. G., and Zheltovodov, A. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Sciences, 39, 121-184(2003)
[9] Pirozzoli, S. and Grasso, F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25. Physics of Fluids, 18, 1-17(2006)
[10] Ganapathisubrama, B., Clemens, N. T., and Dolling, D. S. Low-frequency dynamics of shockinduced separation in a compression ramp interaction. Journal of Fluid Mechanics, 636, 397-436(2009)
[11] Humble, R. A., Scarano, F., and van Oudheusden, B. W. Unsteady flow organization of a shock wave/turbulent boundary layer interaction. Journal of Fluid Mechanics, 635, 47-74(2009)
[12] Piponniau, S., Dussauge, J. P., Debieve, J. F., and Dupont, P. A simple model for low-frequency unsteadiness in shock-induced separation. Journal of Fluid Mechanics, 629, 87-108(2009)
[13] Touber, E. and Sandham, N. D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theoretical and Computational Fluid Dynamics, 23, 79-107(2009)
[14] Pirozzoli, S. and Bernardini, M. Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA Journal, 49, 1307-1312(2011)
[15] Priebe, S. and Martin, M. P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics, 699, 1-49(2012)
[16] Priebe, S., Tu, J. H., Rowley, C.W., andMartin, M. P. Low-frequency dynamics in a shock-induced separated flow. Journal of Fluid Mechanics, 807, 441-477(2016)
[17] Morgan, B., Duraisamy, K., Nguyen, N. S., Kawai, S., and Lele, K. Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. Journal of Fluid Mechanics, 729, 231-284(2013)
[18] Edwards, J. R. Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques:a survey of recent results. Progress in Aerospace Sciences, 44, 447-465(2008)
[19] Knight, D., Longo, J., Drikakis, D., Gaitonde, D., Lani, A., Nompelis I., Reimann, B., and Walpot, L. Assessment of CFD capability for prediction of hypersonic shock interactions. Progress in Aerospace Sciences, 48-49, 8-26(2012)
[20] Loginov, M. S., Adams, N. A., and Zheltovodov, A. A. Large-eddy simulation of shockwave/turbulent-boundary-layer interaction. Journal of Fluid Mechanics, 565, 135-170(2006)
[21] Wilcox, D. C. Turbulence Modeling for CFD, DCW Industries, United States (1998)
[22] Duan, L., Beekman, I., and Martin, M. P. Direct numerical simulation of hypersonic turbulent boundary layers:part 3, effect of Mach number. Journal of Fluid Mechanics, 672, 245-267(2011)
[23] Skote, M. and Henningson, D. S. Direct numerical simulation of a separated turbulent boundary layer. Journal of Fluid Mechanics, 471, 107-136(2002)
[24] Gungor, A. G., Maciel, Y., Simens, M. P., and Soria, J. Scaling and statistics of large-defect adverse pressure gradient turbulent boundary layers. International Journal of Heat and Fluid Flow, 59, 109-124(2016)
[25] Qin, H. and Dong, M. Boundary-layer disturbances subjected to free-stream turbulence and simulation on bypass transition. Applied Mathematics and Mechanics (English Edition), 37(8), 967-986(2016) DOI 10.1007/s10483-016-2111-8
[26] Li, X. L., Fu, D. X., Ma, Y. W., and Liang, X. DNS of Shock/Boundary Layer Interaction Flow in a Supersonic Compression Ramp, Springer-Verlag, Heidelberg, 729-737(2011)
[27] Li, X. L., Leng, Y., and He, Z. W. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis. International Journal for Numerical Methods in Fluids, 73(6), 560- 577(2013)
[28] Li, X. L. Direct numerical simulation techniques for hypersonic turbulent flows. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 36, 147-158(2015)
[29] Zheltovodov, A. A. Analysis of properties of two-dimensional separated flows at supersonic speeds conditions (in Russian). Investigations of Near-wall Flows of Viscous Gas, USSR Academy of Sciences, Russia, 59-94(1979)
[30] Zheltovodov, A. A. Shock waves/turbulent boundary-layer interactions-fundamental studies and applications. Journal of Chemical Physics, 67, 677-698(2013)
[31] Vulis, L. A. and Kashkarov, W. P. Theory of the Viscous Liquid Jets, Nauka, Moscow (1965) |