[1] Pohl, H. A. Dielectrophoresis:the Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, Cambridge (1978) [2] Jones, T. B. Electromechanics of Particles, Cambridge University Press, Cambridge (2005) [3] Morgan, H. and Green, N. G. AC Electrokinetics:Colloids and Nanoparticles, Research Studies Press, Baldock (2003) [4] Kang, Y. and Li, D. Electrokinetic motion of particles and cells in microchannels. Microfluidics and Nanofluidics, 6(4), 431-460(2009) [5] Tay, F. E. H., Yu, L., and Iliescu, C. Particle manipulation by miniaturised dielectrophoretic devices. Defence Science Journal, 59(6), 595-604(2009) [6] Khoshmanesh, K., Baratchi, S., Mitchell, A., Kalantar-Zadeh, K., and Nahavandi, S. Dielectrophoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics, 26(5), 1800-1814(2011) [7] Zhang, C., Khoshmanesh, K., Mitchell, A., and Kalantar-Zadeh, K. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Analytical and Bioanalytical Chemistry, 396(1), 401-420(2010) [8] Gascoyne, P. R. C. and Vykoukal, J. V. Dielectrophoresis-based sample handling in generalpurpose programmable diagnostic instruments. Proceedings of the IEEE, 92(1), 22-42(2004) [9] Pysher, M. D. and Hayes, M. A. Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Analytical Chemistry, 79(12), 4552-4557(2007) [10] Green, N. G. and Morgan, H. Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces. Journal of Physics D:Applied Physics, 31(7), L25-L30(1998) [11] Aldaeus, F., Lin, Y., Amberg, G., and Roeraade, J. Multi-step dielectrophoresis for separation of particles. Journal of Chromatography A, 1131(1), 261-266(2006) [12] Yunus, N. A. M. and Green, N. G. Continuous separation of submicron particles using angled electrodes. Journal of Physics:Conference Series, 142(1), 012068(2008) [13] Mathew, B., Alazzam, A., Abutayeh, M., and Stiharu, I. Modeling microparticles' path in dielectrophoretic-FFF microfludic devices. Micro and Nanoelectronics (RSM), 2015 IEEE Regional Symposium on IEEE, 2015, 1-4(2015) [14] Alazzam, A., Stiharu, I., Bhat, R., and Meguerditchian, A. N. Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis, 32(11), 1327-1336(2011) [15] Jia, Y., Ren, Y., and Jiang, H. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis, 36(15), 1744-1753(2005) [16] Aghaamoo, M., Aghilinejad, A., and Chen, X. Numerical study of insulator-based dielectrophoresis method for circulating tumor cell separation. Proceeding of SPIE, 61, 100611A-1(2017) [17] Yang, J., Huang, Y., Wang, X. B., Becker, F. F., and Gascoyne, P. R. C. Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophysical Journal, 78(5), 2680-2689(2000) [18] Piacentini, N., Mernier, G., Tornay, R., and Renaud, P. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics, 5(3), 034122(2011) [19] Srivastava, S. K., Bayloncardiel, J. L., Lapizcoencinas, B. H., and Minerick, A. R. A continuous DC-insulator dielectrophoretic sorter of microparticles. Journal of Chromatography A, 1218(13), 1780-1789(2011) [20] Lewpiriyawong, N. and Yang, C. Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter. Electrophoresis, 35(5), 714-720(2014) [21] Mohammadi, M., Madadi, H., Casals-Terré, J., and Sellaré, J. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-idielectrophoretic) microfluidic blood plasma separation. Analytical and Bioanalytical Chemistry, 407(16), 4733-4744(2015) [22] Rice, C. L. and Whitehead, R. Electrokinetic flow in a narrow cylindrical capillary. The Journal of Physical Chemistry, 69(11), 4017-4024(1965) [23] Yang, R. J., Fu, L. M., and Lin, Y. C. Electroosmotic flow in microchannels. Journal of Colloid and Interface Science, 239(1), 98-105(2001) [24] Zhou, H. and Tilton, R. D. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis. Journal of Colloid and Interface Science, 285(1), 179-191(2005) [25] Melvin, E. M., Moore, B. R., Gilchrist, K. H., Grego, S., and Velev, O. D. On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes. Biomicrofluidics, 5(3), 034113(2005) [26] Gencoglu, A., Olney, D., LaLonde, A., Koppula, K. S., and Lapizco-Encinas, B. H. Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis. Electrophoresis, 35(2/3), 362-373(2014) [27] Chung, C. C., Glawdel, T., Ren, C. L., and Chang, H. C. Combination of AC electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures. Journal of Micromechanics and Microengineering, 25(3), 035003(2015) [28] Rezanoor, W. M. and Dutta, P. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles. Biomicrofluidics, 10(2), 024101(2016) [29] Mirbozorgi, S. A., Niazmand, H., and Renksizbulut, M. Electro-osmotic flow in reservoirconnected flat microchannels with non-uniform zeta potential. Journal of Fluids Engineering, 128(6), 1133-1143(2006) [30] Chao, K., Chen, B., and Wu, J. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Biomedical Microdevices, 12(6), 959-966(2010) [31] Pal, D. and Chakraborty, S. An analytical approach to the effect of finite-sized end reservoirs on electroosmotic transport through narrow confinements. Electrophoresis, 32(5), 638-645(2011) |