[1] MASLIYAH, J. H. and BHATTACHARJEE, S. Electrokinetic and Colloid Transport Phenomena, John Wiley and Sons, New York (2006)
[2] KORNYSHEV, A. A. Double-layer in ionic liquids:paradigm change? Journal of Physical Chemistry B, 111, 5545-5557(2007)
[3] LOCKETT, V., HORNE, M., SEDEV, R., RODOPOULOS, T., and RALSTON, J. Differential capacitance of the double layer at the electrode/ionic liquids interface. Physical Chemistry Chemical Physics, 12, 12499-12512(2010).
[4] KALUPSON, J., MA, D., RANDALL, C. A., RAJAGOPALAN, R., and ADU, K. Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes. Journal of Physical Chemistry C, 118, 2943-2952(2014)
[5] SYAHIDAH, S. N. and MAJID, S. R. Ionic liquid-based polymer gel electrolytes for symmetrical solid-state electrical double layer capacitor operated at different operating voltages. Electrochimica Acta, 175, 184-192(2015)
[6] CALVERT, P. Hydrogels for soft machines. Advanced Materials, 21, 743-756(2009)
[7] MORIN, S. A., SHEPHERD, R. F., KWOK, S. W., STOKES, A. A., NEMIROSKI, A., and WHITESIDES, G. M. Camouflage and display for soft machines. Science, 337, 828-832(2012)
[8] NIU, X., YANG, X., BROCHU, P., ASTOYANOV, H., YUN, S., YU, Z., and PEI, Q. Bistable large-strain actuation of interpenetrating polymer networks. Advanced Materials, 24, 6513-6519(2012)
[9] ROCHE, E. T., WOHLFARTH, R., OVERVELDE, J. T. B., VASILYEV, N. V., PIGULA, F. A., MOONEY, D. J., BERTOLDI, K., and WALSH, C. J. Actuators:a bioinspired soft actuated material. Advanced Materials, 26, 1145-1145(2014)
[10] CHOSSAT, J. B., PARK, Y. L., WOOD, R. J., and DUCHAINE, V. A soft strain sensor based on ionic and metal liquids. IEEE Sensors Journal, 13, 3405-3414(2013)
[11] KALTENBRUNNER, M., SEKITANI, T., REEDER, J., YOKOTA, T., KURIBARA, K., TOKUHARA, T., DRACK, M., SCHWÖDIAUER, R., GRAZ, I., BAUER-GOGONEA, S., BAUER, S., and SOMEYA, T. An ultra-lightweight design for imperceptible plastic electronics. nature, 499, 458-463(2013)
[12] CARPI, F., FREDIANI, G., TURCO, S., and ROSSI, D. D. Bioinspired tunable lens with musclelike electroactive elastomers. Advanced Functional Materials, 21, 4152-4158(2011)
[13] ANDERSON, I. A., GISBY, T. A., MCKAY, T. G., OBRIEN, B. M., and CALIUS, E. P. Multifunctional dielectric elastomer artificial muscles for soft and smart machines. Journal of Applied Physics, 112, 041101(2012)
[14] HAMMOCK, M. L., CHORTOS, A., TEE, B. C. K., TOK, J. B. H., and BAO, Z. 25th anniversary article:the evolution of electronic skin (e-skin):a brief history, design considerations, and recent progress. Advanced Materials, 25(4), 5997-6038(2013)
[15] KEPLINGER, C., SUN, J. Y., FOO, C. C., ROTHEMUND, P., WHITESIDES, G. M., and SUO, Z. Stretchable, transparent, ionic conductors. Science, 341, 984-987(2013)
[16] CHEN, B., LU, J. J., YANG, C. H., YANG, J. H., ZHOU, J., CHEN, Y. M., and SUO, Z. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Applied Materials & Interfaces, 6, 7840-7845(2014)
[17] MINDLIN, R. D. High frequency vibrations of piezoelectric crystal plates. International Journal of Solids and Structures, 8, 895-906(1972)
[18] LEE, P. C. Y., SYNGELLAKIS, S., and HOU, J. P. A two-dimensional theory for high-frequency vibrations of piezoelectric crystal plates with or without electrodes. Journal of Applied Physics, 61, 1249-1262(1987)
[19] TIERSTEN, H. F. On the thickness expansion of the electric potential in the determination of two-dimensional equations for the vibration of electroded piezoelectric plates. Journal of Applied Physics, 91, 2277-2283(2002)
[20] WANG, J. and YANG, J. S. Higher-order theories of piezoelectric plates and applications. Applied Mechanics Review, 53, 87-99(2000)
[21] WU, B., CHEN, W. Q., and YANG, J. S. Two-dimensional equations for high-frequency extensional vibrations of piezoelectric ceramic plates with thickness poling. Archive Applied Mechanics, 84, 1917-1935(2014)
[22] YANG, C. H., CHEN, B., LU, J. J., YANG, J. H., ZHOU, J., CHEN, Y. M., and SUO, Z. Ionic cable. Extreme Mechanics Letters, 3, 59-65(2015)
[23] KATO, M. Numerical analysis of the Nernst-Planck-Poisson system. Journal of Theoretical Biology, 177, 299-304(1995)
[24] COALSON, R. D. and KURNIKOVA, M. G. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Transactions on Nanobioscience, 4, 81-93(2005)
[25] KILIC, M. S. and BAZANT, M. Z. Steric effects in the dynamics of electrolytes at large applied voltages:Ⅱ. modified Poisson-Nernst-Planck equations. Physical Review E, 75, 021503(2007)
[26] KRABBENHØFT, K. and KRABBENHØFT, J. Application of the Poisson-Nernst-Planck equations to the migration test. Cement and Concrete Research, 38, 77-88(2007)
[27] KOSI?KA, I. D., GOYCHUK, I., KOSTUR, M., SCHMID, G., and HÄNGGI, P. Rectification in synthetic conical nanopores:a one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77, 031131(2008)
[28] LIU, W. One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. Journal of Differential Equations, 246, 428-451(2009)
[29] SCHÖNKE, J. Unsteady analytical solutions to the Poisson-Nernst-Planck equations. Journal of Physics A:Mathematical and Theoretical, 45, 455204(2012)
[30] BARBERO, G. and SCALERANDI, M. Similarities and differences among the models proposed for real electrodes in the Poisson-Nernst-Planck theory. Journal of Chemical Physics, 136, 084705(2012) |