[1] KUSHWAHA, M. S., HALEVI, P., DOBRZYNSKI, L., and DJAFARI-ROUHANI, B. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71, 2022-2025(1993) [2] SIGALAS, M. M. and ECONOMOU, E. N. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158, 377-382(1992) [3] MARTINEZSALA, R., SANCHO, J., SÁNCHEZ, J. V., GÓMEZ, V., LLINARES, J., and MESEGUER, F. Sound-attenuation by sculpture. nature, 378, 241(1995) [4] KHELIF, A., CHOUJAA, A., DJAFARI-ROUHANI, B., WILM, M., BALLANDRAS, S., and LAUDE, V. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68, 214301(2003) [5] KHELIF, A., CHOUJAA, A., BENCHABANE, S., DJAFARI-ROUHANI, B., and LAUDE, V.Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84, 4400-4402(2004) [6] YUAN, B., LIANG, B., TAO, J. C., ZOU, X. Y., and CHENG, J. C. Broadband directional acoustic waveguide with high efficiency. Applied Physics Letters, 101, 043503(2012) [7] LI, X. F., NI, X., FENG, L., LU, M. H., HE, C., and CHEN, Y. F. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Physical Review Letters, 106, 084301(2011) [8] ZHAO, D. G., LIU, Z. Y., QIU, C. Y., HE, Z. J., CAI, F. Y., and KE, M. Z. Surface acoustic waves in two-dimensional phononic crystals:dispersion relation and the eigenfield distribution of surface modes. Physical Review B, 76, 144301(2007) [9] CICEK, A., GUNGOR, T., KAYA, O. A., and ULUG, B. Guiding airborne sound through surface modes of a two-dimensional phononic crystal. Journal of Physics D:Applied Physics, 48, 235303(2015) [10] ERINGEN, A. C. and WEGNER, J. L. Nonlocal continuum field theories. Applied Mechanics Reviews, 56, B20-B22(2003) [11] WANG, Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied Physics, 98, 124301-124306(2005) [12] ZHANG, Y. Q., LIU, G. R., and XIE, X. Y. Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Physical Review B, 71, 195404(2005) [13] WANG, L. Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory. Physica E, 41, 1835-1840(2009) [14] LEE, H. L. and CHANG, W. J. Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. Journal of Applied Physics, 108, 093503(2010) [15] MURMU, T., ADHIKARI, S., and WANG, C. Y. Torsional vibration of carbon nanotubebuckyball systems based on nonlocal elasticity theory. Physica E, 43, 1276-1280(2011) [16] CHEN, A., WANG, Y. S., KE, L. L., GUO, Y. F., and WANG, Z. D. Wave propagation in nanoscaled periodic layered structures. Journal of Computational and Theoretical Nanoscience, 10, 2427-2437(2013) [17] CHEN, A. L. and WANG, Y. S. Size-effect on band structures of nanoscale phononic crystals. Physica E, 44, 317-321(2011) [18] CHEN, A. L., YAN, D. J., WANG, Y. S., and ZHANG, C. Z. Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures. Ultrasonics, 65, 154-164(2016) [19] PNEVMATIKOS, S., FLYTZANIS, N., and REMOISSENET, M. Soliton dynamics of nonlinear diatomic lattices. Physical Review B, 33, 2308-2321(1986) [20] ALY, A. H. and MEHANEY, A. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures. Chinese Physics B, 25, 333-339(2016) [21] ASIRI, S., BAZ, A., and PINES, D. Active periodic struts for a gearbox support system. Smart Materials and Structures, 15, 347-358(2006) [22] MALINOVSKY, V. S. and DONSKOY, D. M. Electro-magnetically controlled acoustic metamaterials with adaptive properties. The Journal of the Acoustical Society of America, 132, 2866-2872(2012) [23] CHAKRABORTY, G. and MALLIK, A. K. Dynamics of a weakly non-linear periodic chain. International Journal of Non-Linear Mechanics, 36, 375-389(2001) [24] JIMÉNEZ, N., MEHREM, A., PICÓ, R., GARCÍA-RAFFI, L. M., and SÁNCHEZ-MORCILLO, V. J. Nonlinear propagation and control of acoustic waves in phononic superlattices. Comptes Rendus Physique, 17, 543-554(2015) [25] MOVCHAN, A. B., MOVCHAN, N. V., and HAQ, S. Localised vibration modes and stop bands for continuous and discrete periodic structures. Materials Science and Engineering A, 431, 175-183(2006) [26] CHEN, S. B., WEN, J. H., WANG, G., YU, D., and WEN, X. Improved modeling of rods with periodic arrays of shunted piezoelectric patches. Journal of Intelligent Material Systems and Structures, 23, 1613-1621(2012) [27] WANG, Y. Z., LI, F. M., and WANG, Y. S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. International Journal of Mechanical Sciences, 106, 357-362(2016) [28] BAZ, A. Active control of periodic structures. Journal of Vibration and Acoustics, 123, S14-S21(2001) [29] VAKAKIS, A. F., MANEVITCH, L. I., GENDELMAN, O., and BERGMAN, L. Dynamics of linear discrete systems connected to local, essentially non-linear attachments. Journal of Vibration and Acoustics, 264, 559-577(2003) [30] WANG, Y. Z. and WANG, Y. S. Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion, 78, 1-8(2018) [31] WOLF, J., NGOC, T. D. K., KILLE, R., and MAYER, W. G. Investigation of Lamb waves having negative group velocity. The Journal of the Acoustical Society of America, 83, 122-126(1988) [32] NEGISHI, K. and LI, H. U. Strobo-photoelastic visualization of Lamb waves with negative group velocity propagating on a glass plate. Japanese Journal of Applied Physics, 35, 3175-3176(1996) [33] MARSTON, P. L. Negative group velocity Lamb waves on plates and applications to the scattering of sound by shells. The Journal of the Acoustical Society of America, 113, 2659-2662(2003) [34] MAZNEV, A. A. and EVERY, A. G. Surface acoustic waves with negative group velocity in a thin film structure on silicon. Applied Physics Letters, 95, 011903(2009) [35] PRADA, C., CLORENNEC, D., and ROYER, D. Local vibration of an elastic plate and zerogroup velocity Lamb modes. The Journal of the Acoustical Society of America, 124, 203-212(2008) |