Applied Mathematics and Mechanics (English Edition) ›› 2018, Vol. 39 ›› Issue (12): 1769-1788.doi: https://doi.org/10.1007/s10483-018-2400-9
• Articles • Previous Articles Next Articles
Yongliang ZHANG1, M. N. SMIRNOVA2, A. I. BOGDANOVA2, Zuojin ZHU1,2, N. N. SMIRNOV2,3
Received:
2018-05-02
Revised:
2018-08-10
Online:
2018-12-01
Published:
2018-12-01
Contact:
N. N. SMIRNOV
E-mail:wonrims@inbox.ru
Supported by:
2010 MSC Number:
Yongliang ZHANG, M. N. SMIRNOVA, A. I. BOGDANOVA, Zuojin ZHU, N. N. SMIRNOV. Travel time prediction with viscoelastic traffic model. Applied Mathematics and Mechanics (English Edition), 2018, 39(12): 1769-1788.
[1] LIGHTHILL, M. J. and WHITHAM, G. B. On kinematic waves ii:a theory of traffic flow on long crowded roads. Proc. Roy. Soc. Lond A, 229, 317-345(1955) [2] RICHARDS, P. I. Shock waves on the freeway. Operations Res., 4, 42-51(1956) [3] PAYNE, H. J. Models of freeway traffic and control. Mathematical Model of Public Systems, Simulation Council Proc. La Jola California, 1, 51-61(1971) [4] HELBING, D. and TREIBER, M. Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Phys. Rev. Lett., 81, 3042-3045(1998) [5] HOOGENDOORN, S. P. and BOVY, P. H. L. Continuum modeling of multiclass traffic flow. Transp. Res. Part B, 34(2), 123-146(2000) [6] KERNER, B. S. and KONHÄUSER, P. Cluster effect in initially homogemeous traffic flow. Phys. Rev. E, 48, 2335-2338(1993) [7] GREENBERG, J. M. Congestion redux. SIAM J. Appl. Math., 64(4), 1175-1185(2004) [8] BORSCHE, R., KIMATHI, M., and KLAR, A. A class of multi-phase traffic theories for microscopic, kinetic and continuum traffic models. Computers and Mathematics with Applications, 64, 2939-2953(2012) [9] LEBACQUE, J. P., MAMMAR, S., and HAJ-SALEM, H. Generic Second Order Traffic Flow Modelling. Transportation and Traffic Theory (eds. ALLSOP, R. E. and BENJIAMIN, G. H.) Oxford, 755-776(2007) [10] LEBACQUE, J. P. and KHOSHYARAN, M. M. A variational formulation for higher order macroscopic traffic flow models of the gsom family. Transp. Res. Part B, 57, 245-265(2013) [11] ZHANG, P., WONG, S. C., and DAI, S. Q. A conserved higher order aniso-tropic traffic flow model:description of equilibrium and non-equilibrium flows. Transp. Res. Part B, 43(5), 562-574(2009) [12] FLYNN, M. R., KASIMOV, A. R., NAVE, J. C., ROSALES, R. R., and SEIBOLD, B. Selfsustained nonlinear waves in traffic flow. Phys. Rev. E, 79, 056113(2009) [13] HELBING, D. Traffic and related self-driven many-particle systems. Rev. Mod. Phys., 73, 1067-1141(2001) [14] NAGATANI, T. The physics of traffic jams. Rep. Prog. Phys., 65, 1331-1386(2002) [15] BRACKSTONE, M. and MCDONALD, M. Car-following:a historical review. Transp. Res. Part F, 2, 181-196(1999) [16] NAGEL, K. and SCHRECKENBERG, M. A cellular automaton model for freeway traffic. J. De Phys. I, 2(12), 2221-2229(1992) [17] HELBING, D. and HUBERMAN, B. A. Coherent moving states in highway traffic. nature, 396(6713), 738-740(1998) [18] CHOWDHURY, D., SANTEN, L., and SCHADSSCHNEIDER, A. Statistical physics of vehicular traffic and some related systems. Physics Reports, 329, 199-329(2000) [19] NGODUY, D. Application of gas-kinetic theory to modelling mixed traffic of manual and adaptive cruise control vehicles. Transportmetrica A:Transport Science, 8(1), 43-60(2012) [20] NGODUY, D. Platoon-based macroscopic model for intelligent traffic flow. Transportmetrica B:Transport Dynamics, 1(2), 153-169(2013) [21] LI, J. and ZHANG, H. M. The variational formulation of a non-equilibrium traffic flow model:theory and implications. Procedia-Social and Behavioral Sciences, 80, 327-340(2013) [22] ZHU, Z. J. and YANG, C. Visco-elastic traffic flow model. J. Advanced Transp., 47, 635-649(2013) [23] TORDEUX, A., ROUSSIGNOL, M., LEBACQUE, J. P., and LASSARRE, S. A stochastic jump process applied to traffic flow modelling. Transportmetrica A:Transport Science, 10(4), 350-375(2014) [24] COSTESEQUE, G. and LEBACQUE, J. P. A variational formulation for higher order macroscopic traffic flow models:numerical investigation. Transp. Res. Part B, 70, 112-133(2014) [25] BOGDANOVA, A. I., SMIRNOVA, M. N., ZHU, Z. J., and SMIRNOV, N. N. Exploring peculiarities of traffic flows with a viscoelastic model. Transportmetrica A:Transport Science, 11(7), 561-578(2015) [26] SMIRNOVA, M. N., BOGDANOVA, A. I., ZHU, Z. J., and SMIRNOV, N. N. Traffic flow sensitivity to viscoelasticity. Theoretical and Applied Mechanics Letters, 6, 182-185(2016) [27] SMIRNOVA, M. N., BOGDANOVA, A. I., ZHU, Z. J., and SMIRNOV, N. N. Traffic flow sensitivity to parameters in viscoelastic modelling. Transportmetrica B:Transport Dynamics, 5(1), 115-131(2017) [28] ZHANG, Y. L., SMIRNOVA, M. N., BOGDANOVA, A. I., ZHU, Z. J., and SMIRNOV, N. N. Travel time estimation by urgent-gentle class traffic flow model. Transp. Res. Part B, 113, 121-142(2018) [29] CHANG, G. L. and MAHMASSANI, H. S. Travel time prediction and departure time adjustment behavior dynamics in a congested traffic system. Transp. Res. Part B, 22, 217-232(1988) [30] DAILEY, D. J. Travel-time estimation using cross-correlation techniques. Transp. Res. Part B, 27(2), 97-107(1993) [31] LINT, J. V. and DER ZIJPP, N. V. Improving a travel-time estimation algorithm by using dual loop detectors. Transp. Res. Rec., 1855, 41-48(2003) [32] CHIEN, S. I. J. and KUCHIPUDI, C. M. Dynamic travel time prediction with real-time and historic data. ASCE J. Transp. Eng., 129(6), 608-616(2003) [33] WU, C. H., MO, J. M., and LEE, D. T. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst., 5(4), 276-281(2004) [34] VAN LINT, J. W. C., HOOGENDOORN, S. P., and VAN ZUYLEN, H. J. Accurate freeway travel time prediction with state-space neural networks under missing data. Transp. Res. Part C, 13, 347-369(2005) [35] HOFLEITNER, A., HERRING, R., and BAYEN, A. Arterial travel time forecast with streaming data:a hybrid approach of flow modeling and machine learning. Transp. Res. Part B, 46, 1097-1122(2012) [36] RAMEZANI, M. and GEROLIMINIS, N. On the estimation of arterial route travel time distribution with markov chains. Transp. Res. Part B, 46, 1576-1590(2012) [37] JENELIUS, E. and KOUTSOPOULOS, H. N. Travel time estimation for urban road networks using low frequency probe vehicle data. Transp. Res. Part B, 53, 64-81(2013) [38] YILDIRIMOGLU, M. and GEROLIMINIS, N. Experienced travel time prediction for congested freeways. Transp. Res. Part B, 53, 45-63(2013) [39] HANS, E., CHIABAUT, N., and LECLERCQ, L. Applying variational theory to travel time estimation on urban arterials. Transp. Res. Part B, 78, 169-181(2015) [40] KUMAR, B. A., VANAJAKSHI, L., and SUBRAMANIAN, S. C. Bus travel time prediction using a time-space discretization approach. Transp. Res. Part C, 79, 308-332(2017) [41] CHANG, G. L. and MAHMASSANI, H. S. Travel time prediction and departure time adjustment behavior dynamics in a congested traffic system. Transp. Res. Part B, 22, 217-232(1988) [42] MA, Z. L., KOUTSOPOULOS, H. N., FERREIRA, L., and MESBAH, M. Estimation of trip travel time distribution using a generalized markov chain approach. Transp. Res. Part C, 74, 1-21(2017) [43] RAHMANI, M., KOUTSOPOULOS, H. N., and JENELIUS, E. Travel time estimation from sparse floating car data with consistent path inference:a fixed point approach. Transp. Res. Part C, 85, 628-643(2017) [44] ZHANG, H. M. Driver memory, traffic viscosity and a viscous vehicular traffic flow model. Transp. Res. Part B, 37, 27-41(2003) [45] DEL CALSTILLO, J. M. Propagation of perturbations in dense traffic flow:a model and its implications. Transp. Res. Part B, 35, 367-389(2001) [46] HILLIGES, M. and WEIDLICH, W. A phenomenological model for dynamic traffic flow in networks. Transp. Res. Part B, 29(6), 407-431(1995) [47] KERNER, B. S. Synchronized flow as a new traffic phase and related problems for traffic flow modelling. Mathematical and Computer Modelling, 35, 481-508(2002) [48] SCHÖNHOF, M. and HELBING, D. Criticism of three-phase traffic the ory. Transp. Res. Part B, 43, 784-797(2009) [49] HAN, S. F. Constitutive Theory of Viscoelastic Fluids (in Chinese), Science Press, Beijing, 59-86(2000) [50] SMIRNOV, N. N., KISELEV, A. B., NIKITIN, V. F., SILNIKOV, V. F., and MANENKOVA, A. S. Hydrodynamic traffic flow models and its application to studying traffic control effectiveness. WSEAS Transactions on Fluid Mechanics, 9, 178-186(2014) [51] SMIRNOV, N. N., KISELEV, A. B., NIKITIN, V. F., and YUMASHEV, M. V. Mathematical modelling of road traffic flows. Moscow University Mechanics Bulletin, 55(4), 12-18(2000) [52] KISELEV, A. B., KOKOLEVA, A. V., NIKITIN, V. F., and SMIRNOV, N. N. Mathematical modeling of traffic flow on controled roads. J. Appl. Math. Mech., 68, 933-939(2004) [53] SMIRNOVA, M. N., BOGDANOVA, A. I., ZHU, Z. J., MANENKOVA, A. S., and SMIRNOV, N. N. Mathematical modeling of traffic flows using continuum approach:visco-elastic effect in traffic flows (in Russian). Mathem. Mod., 26, 54-64(2014) [54] AW, A. and RASCLE, M. Resurrection of second order models of traffic flow. SIAM J. Appl. Math., 60, 916-938(2000) [55] KLAR, A. and WEGENER, R. Kinetic derivation of macroscopic anticipation models for vehicular traffic. SIAM J. Appl. Math., 60, 1749-1766(2000) [56] KISELEV, A. B., NIKITIN, V. F., SMIRNOV, N. N., and YUMASHEV, M. V. Irregular traffic flow on a ring road. J. Appl. Math. Mech., 64(4), 627-634(2000) [57] ZHU, Z. J., WU, Q. S., JIANG, R., and WU, T. Q. Numerical study on traffic flow with single parameter state equation. ASCE J. Transp. Engineering, 128, 167-172(2002) [58] HAIGHT, F. A. Mathematical Theories of Traffic Flow, Academic Press, New York, 89-92(1963) [59] MA. J., CHAN, C. K., YE, Z. B., and ZHU, Z. J. Effects of maximum relaxation in viscoelastic traffic flow modeling. Transp. Res. Part B, 113, 143-163(2018) [60] DAGANZO, C. F. Requiem for second-order fluid approximations of traffic flow. Transp. Res. Part B, 29, 277-286(1995) [61] RASCLE, M. An improved macroscopic model of traffic flow:derivation and links with the lighthill-whitham model. Mathematical and Computer Modelling, 35, 581-590(2002) [62] XU, R. Y., ZHANG, P., DAI, S. C., and WONG, S. C. Admissibility of a wide cluster solution inanisotropic higher-order traffic flow models. SIAM J. Appl. Math., 68(2), 562-573(2007) [63] ROE, P. C. Approximate riemann solver, parameter vectors, and difference schemes. J. Comput. Phys., 43, 357-372(1981) [64] SHUI, H. S. Finite Difference in One-dimensional Fluid Mechanics (in Chinese), National Defense, Beijing, 333-355(1998) [65] ZHU, Z. J. and WU, T. Q. Two-phase fluids model for freeway traffic and its application to simulate the evolution of solitons in traffic. ASCE J. Transp. Engineering, 129, 51-56(2003) [66] CHANG, G. L. and ZHU, Z. J. A macroscopic traffic model for highway work zones:formulations and numerical results. J. Advanced Transp., 40(3), 265-287(2006) [67] TAO, W. Q. Numerical Heat Transfer (in Chinese), Xian Jiaotong University Press, Xi'an, 195-251(2001) [68] DAGANZO, C. F. Fundamentals of Transportation and Traffic Operations, Pergamon, New York, 110-112(1997) [69] MCSHANE, W. R., ROESS, R. P., and PRASSAS, E. S. Traffic Engineering, Chap. 12, 2nd ed., Prentice-Hall, New Jersey, 282-306(1998) [70] DRAKE, J. S., SCHOFER, J. L., and MAY, A. D., JR. A statistical analysis of speed-density hypothesis. Transportation Research Record, 154, 81-82(1967) |
[1] | M. HAMID, M. USMAN, Zhenfu TIAN. Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD flows [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 669-692. |
[2] | Si YUAN, Quan YUAN. Condensed Galerkin element of degree m for first-order initial-value problem with O(h2m+2) super-convergent nodal solutions [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 603-614. |
[3] | Jianyun WANG, Yanping CHEN. Superconvergence analysis of bi-k-degree rectangular elements for two-dimensional time-dependent Schrödinger equation [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(9): 1353-1372. |
[4] | Si YUAN, Yue WU, Qinyan XING. Recursive super-convergence computation for multi-dimensional problems via one-dimensional element energy projection technique [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(7): 1031-1044. |
[5] | M. M. KHADER. Approximate solutions for the problem of liquid film flow over an unsteady stretching sheet with thermal radiation and magnetic field [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(6): 867-876. |
[6] | Jiaqun WANG, Xiaojing LIU, Youhe ZHOU. A high-order accurate wavelet method for solving Schrödinger equations with general nonlinearity [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 275-290. |
[7] | Hong XIA, Zhendong LUO. Optimized finite difference iterative scheme based on POD technique for 2D viscoelastic wave equation [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(12): 1721-1732. |
[8] | Boling GUO, Qiang XU, Zhe YIN. Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(3): 403-416. |
[9] | Guodong ZHANG, Xiaojing DONG, Yongzheng AN, Hong LIU. New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 863-872. |
[10] | Dong-yang SHI;Xin LIAO;Qi-li TANG. Highly efficient H1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(7): 897-912. |
[11] | GUO Shu-Qi;YANG Shao-Pu. Transverse vibrations of arbitrary non-uniform beams [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(5): 607-620. |
[12] | Yi-rang YUAN;Chang-feng LI;Tong-jun SUN;Yun-xin LIU. Characteristic fractional step finite difference method for nonlinear section coupled system [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1311-1330. |
[13] | Dong-yang SHI;Li-fang PEI. Superconvergence of nonconforming finite element penalty scheme for Stokes problem using L2 projection method [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(7): 861-874. |
[14] | Dong-fen BIAN;Bo-ling GUO. Optimal convergence rates for three-dimensional turbulent flow equations [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(5): 637-656. |
[15] | Yi-rang YUAN;Chang-feng LI;Tong-jun SUN;Yuan-xin LIU . Modified characteristic finite difference fractional step method for moving boundary value problem of nonlinear percolation system [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(4): 417-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||