Applied Mathematics and Mechanics (English Edition) ›› 2020, Vol. 41 ›› Issue (1): 83-104.doi: https://doi.org/10.1007/s10483-020-2558-7
• Articles • Previous Articles Next Articles
M. D. K. NIAZI, Hang XU
Received:
2019-07-14
Revised:
2019-08-06
Published:
2019-12-14
Contact:
Hang XU
E-mail:hangxu@sjtu.edu.cn
Supported by:
2010 MSC Number:
M. D. K. NIAZI, Hang XU. Modelling two-layer nanofluid flow in a micro-channel with electro-osmotic effects by means of Buongiorno's model. Applied Mathematics and Mechanics (English Edition), 2020, 41(1): 83-104.
[1] GRAVESEN, P., BRANEBJERG, J., and JENSEN, O. S. Microfluidics-a review. Journal of Micromechanics and Microengineering, 3(4), 168-182(1993) [2] BECKER, H. and GÄRTNER, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis, 21(1), 12-26(2000) [3] ZIAIE, B., BALDI, A., LEI, M., GU, Y., and SIEGEL, R. A. Hard and soft micromachining for BioMEMS:review of techniques and examples of applications in microfluidics and drug delivery. Advanced Drug Delivery Reviews, 56(2), 145-172(2004) [4] NGUYEN, N. T. and WU, Z. Micromixers-a review. Journal of Micromechanics and Microengineering, 15(2), R1-R16(2004) [5] OHNO, K. I., TACHIKAWA, K., and MANZ, A. Microfluidics:applications for analytical purposes in chemistry and biochemistry. Electrophoresis, 29(22), 4443-4453(2008) [6] MAXWELL, J. C. A Treatise on Electricity and Magnetism, Clarendon Press, Oxford (1873) [7] CHOI, S. U. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposion, 12-17(1995) [8] EASTMAN, J. A., CHOI, S. U. S., LI, S., YU, W., and THOMPSON, L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718-720(2001) [9] XUAN, Y. and LI, Q. Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125(1), 151-155(2003) [10] HERIS, S. Z., ETEMAD, S. G., and ESFAHANY, M. N. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33(4), 529-535(2006) [11] WILLIAMS, W., BUONGIORNO, J., and HU, L. W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer, 130(4), 042412(2008) [12] KUZNETSOV, A. V. and NIELD, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243-247(2010) [13] WANG, X. J., LI, X. F., XU, Y. H., and ZHU, D. S. Thermal energy storage characteristics of Cu-H2O nanofluids. Energy, 78, 212-217(2014) [14] MANIKANDAN, S. and RAJAN, K. S. MgO-therminol 55 nanofluids for efficient energy management:analysis of transient heat transfer performance. Energy, 88, 408-416(2015) [15] KARIMIPOUR, A., NEZHAD, A. H., DORAZIO, A., ESFE, M. H., SAFAEI, M. R., and SHIRANI, E. Simulation of copper-water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. European Journal of Mechanics-B/Fluids, 49, 89-99(2015) [16] HUNTER, R. J. Zeta Potential in Colloid Science:Principles and Applications, Academic Press, Harcour Brace Jovanovich (2013) [17] MALA, G. M., LI, D., and DALE, J. D. Heat transfer and fluid flow in microchannels. International Journal of Heat and Mass Transfer, 40, 3079-3088(1997) [18] MALA, G. M. and LI, D. Flow characteristics of water in microtubes. International Journal of Heat and Fluid Flow, 20(2), 142-148(1999) [19] REN, L. Q., QU, W. L., and LI, D. Q. Interfacial electrokinetic effects on liquid flow in microchannels. International Journal of Heat and Mass Transfer, 44(16), 3125-3134(2001) [20] DARABI, J. and EKULA, K. Development of a chip-integrated micro cooling device. Microelectronics Journal, 34(11), 1067-1074(2003) [21] DONALDSON, L. Small and powerful nuclear battery developed. Materials Today, 12(11), 10-10(2009) [22] WANG, B. X. and PENG, X. F. Experimental investigation on liquid forced-convection heat transfer through microchannels. International Journal of Heat and Mass Transfer, 37, 73-82(1994) [23] GUO, Z. Y. and LI, Z. X. Size effect on single-phase channel flow and heat transfer at microscale. International Journal of Heat and Fluid Flow, 24(3), 284-298(2003) [24] REN, C. L. and LI, D. Improved understanding of the effect of electrical double layer on pressuredriven flow in microchannels. Analytica Chimica Acta, 531(1), 15-23(2005) [25] YOU, X. Y. and GUO, L. X. Analysis of EDL effects on the flow and flow stability in microchannels. Journal of Hydrodynamics, 22(5), 725-731(2010) [26] JING, D., PAN, Y., and WANG, X. Joule heating, viscous dissipation and convective heat transfer of pressure-driven flow in a microchannel with surface charge-dependent slip. International Journal of Heat and Mass Transfer, 108, 1305-1313(2017) [27] SRINIVAS, B. Electroosmotic flow of a power law fluid in an elliptic microchannel. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 492, 144-151(2016) [28] QI, C. and NG, C. O. Electroosmotic flow of a two-layer fluid in a slit channel with gradually varying wall shape and zeta potential. International Journal of Heat and Mass Transfer, 119, 52-64(2018) [29] ZHENG, J. and JIAN, Y. Rotating electroosmotic flow of two-layer fluids through a microparallel channel. International Journal of Mechanical Sciences, 136, 293-302(2018) [30] TAO, L. N. On combined free and forced convection in channels. Journal of Heat Transfer, 82(3), 233-238(1960) [31] AUNG, W. and WORKU, G. Developing flow and flow reversal in a vertical channel with asymmetric wall temperatures. Journal of Heat Transfer, 108(2), 299-304(1986) [32] KUBAN, P., DASGUPTA, P. K., and MORRIS, K. A. Microscale continuous ion exchanger. Analytical Chemistry, 74(21), 5667-5675(2002) [33] KAMHOLZ, A. E., WEIGL, B. H., FINLAYSON, B. A., and YAGER, P. Quantitative analysis of molecular interaction in a microfluidic channel:the T-sensor. Analytical Chemistry, 71(23), 5340-5347(1999) [34] WEIGL, B. H., BARDELL, R. L., KESLER, N., and MORRIS, C. J. Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces-computational fluid dynamics model results and fluidic verification experiments. Fresenius' Journal of Analytical Chemistry, 371(2), 97-105(2001) [35] BRASK, A., GORANOVIC, G., and BRUUS, H. Electroosmotic Pumping of Nonconducting Liquids by Viscous Drag from a Secondary Conducting Liquid, Nanotech, 190-193(2003) [36] GAO, Y., WONG, T. N., YANG, C., and OOI, K. T. Two-fluid electroosmotic flow in microchannels. Journal of Colloid and Interface Science, 284(1), 306-314(2005) [37] SHANKAR, V. and SHARMA, A. Instability of the interface between thin fluid films subjected to electric fields. Journal of Colloid and Interface Science, 274(1), 294-308(2004) [38] VERMA, R., SHARMA, A., KARGUPTA, K., and BHAUMIK, J. Electric field induced instability and pattern formation in thin liquid films. Langmuir, 21(8), 3710-3721(2005) [39] GAO, Y., WANG, C., WONG, T. N., YANG, C., NGUYEN, N. T., and OOI, K. T. Electroosmotic control of the interface position of two-liquid flow through a microchannel. Journal of Micromechanics and Microengineering, 17(2), 358-366(2007) [40] GAIKWAD, H., BASU, D. N., and MONDAL, P. K. Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip:the role applied pressure gradient. Electrophoresis, 37(14), 1998-2009(2016) [41] GAIKWAD, H. S., BASU, D. N., and MONDAL, P. K. Slip driven micro-pumping of binary system with a layer of non-conducting fluid under electrical double layer phenomenon. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 518, 166-172(2017) [42] XIE, Z. Y. and JIAN, Y. J. Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels. Energy, 139, 1080-1093(2017) [43] ZHAO, Q., XU, H., and TAO, L. Nanofluid flow and heat transfer in a microchannel with interfacial electrokinetic effects. International Journal of Heat and Mass Transfer, 124, 158-167(2018) [44] BEJAN, A. A study of entropy generation in fundamental convective heat transfer. Journal of Heat Transfer, 101(4), 718-725(1979) [45] BEJAN, A. Second law analysis in heat transfer. Energy, 5(8-9), 720-732(1980) [46] ABBASSI, H. Entropy generation analysis in a uniformly heated microchannel heat sink. Energy, 32(10), 1932-1947(2007) [47] MAKINDE, O. D. Entropy-generation analysis for variable-viscosity channel flow with nonuniform wall temperature. Applied Energy, 85(5), 384-393(2008) [48] XU, H., RAEES, A., and XU, X. H. Entropy generation of nanofluid flow and heat transfer driven through a paralleled microchannel. Canadian Journal of Physics, 97(6), 678-691(2018) [49] BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240-250(2006) [50] FAROOQ, U. and LIN,Z. L. Nonlinear heat transfer in a two-layer flow with nanofluids by OHAM. Journal of Heat Transfer, 136(2), 021702(2014) [51] FAROOQ, U., HAYAT, T., ALSAEDI, A., and LIAO, S. J. Heat and mass transfer of two-layer flows of third-grade nano-fluids in a vertical channel. Applied Mathematics and Computation, 242, 528-540(2014) [52] LIAO, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Higher Education Press, Beijing, 153-165(2012) [53] DAUENHAUER, E. C. and MAJDALANI, J. Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Physics of Fluids, 151, 1485-1495(2003) [54] SUN, Q. and POP, I. Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. International Journal of Thermal Sciences, 50(11), 2141-2153(2011) [55] NGUYEN, N. T. Micro-magnetofluidics:interactions between magnetism and fluid flow on the microscale microfluid. Microfluids and Nanofluids, 12, 1-16(2012) [56] SARKAR, S., GANGULY, S., and CHAKRABORTY, S. Influence of combined electromagnetohydrodynamics on microchannel flow with electrokinetic effect and interfacial slip. Microfluidics and Nanofluidics, 21, 1-16(2017) |
[1] | N. HUMNEKAR, D. SRINIVASACHARYA. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580. |
[2] | C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216. |
[3] | L. ANITHA, B. J. GIREESHA. Convective flow of Jeffrey nanofluid along an upright microchannel with Hall current and Buongiorno model: an irreversibility analysis [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1613-1628. |
[4] | B. K. SHARMA, R. GANDHI, T. ABBAS, M. M. BHATTI. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 459-476. |
[5] | S. P. V. ANANTH, B. N. HANUMAGOWDA, S. V. K. VARMA, C. S. K. RAJU, I. KHAN, P. RANA. Thermo-diffusion impact on immiscible flow characteristics of convectively heated vertical two-layered Baffle saturated porous channels in a suspension of nanoparticles: an analytical study [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 307-324. |
[6] | Shuguang LI, M. I. KHAN, F. ALI, S. S. ABDULLAEV, S. SAADAOUI, HABIBULLAH. Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 2005-2018. |
[7] | Qingkai ZHAO, Longbin TAO, Hang XU. Analysis of periodic pulsating nanofluid flow and heat transfer through a parallel-plate channel in the presence of magnetic field [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1957-1972. |
[8] | A. M. ALSHARIF, A. I. ABDELLATEEF, Y. A. ELMABOUD, S. I. ABDELSALAM. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 931-944. |
[9] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[10] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[11] | B. J. GIREESHA, L. ANITHA. Repercussion of Hall effect and nonlinear radiation on Couette-Poiseuille flow of Casson-Williamson fluid through upright microchannel [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1951-1964. |
[12] | Weipeng HU, Zhen WANG, Yulu HUAI, Xiqiao FENG, Wenqi SONG, Zichen DENG. Effects of temperature change on the rheological property of modified multiwall carbon nanotubes [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1503-1514. |
[13] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[14] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
[15] | J. K. MADHUKESH, G. K. RAMESH, B. C. PRASANNAKUMARA, S. A. SHEHZAD, F. M. ABBASI. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1191-1204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||