[1] YANG, S., FENG, X., and MULLEN, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Advanced Materials, 23, 3575-3579(2011) [2] KIM, K. H., HUSAKOU, A., and HERRMANN, G. Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes. Optic Express, 18, 7488-7496(2010) [3] GLEITER, H. Nanostructured materials. Progress in Materials Science, 33(4), 223-315(1989) [4] ⅡJIMA, S. Helical microtubules of graphitic carbon. nature, 354, 56-58(1991) [5] EBBESEN, T. W. and AJAYAN, P. M. Large-scale synthesis of carbon nanotubes. nature, 358, 220-222(1992) [6] THESS, A., LEE, R., NIKOLAEV, P., DAI, H., PETIT, P., ROBERT, J., XU, C., LEE, Y. H., KIM, S. G., RINZLER, A. G., COLBERT, D. T., SCUSERIA, G. E., TOMANEK, D., FISCHER, J. E., and SMALLEY, R. E. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483-489(1996) [7] ⅡJIMA, S. and ICHIHASHI, T. Single-shell carbon nanotubes of 1-nm diameter. nature, 363, 603-605(1993) [8] LIU, M. Q. and COWLEY, J. M. Structures of the helical carbon nanotubes. Carbon, 32(3), 393-403(1994) [9] ALLEN, M. P. and TILDESLEY, D. J. Computer Simulation in Chemical Physics, Klüwer Academic Publishers, Amsterdam (1987) [10] ALLEN, M. P. and TILDESLEY, D. J. Computer Simulation of Liquids, Oxford University Press, Oxford (1993) [11] SHENOY, V. B., MILLER, R., TADMOR, E. B., RODNEY, D., PHILLIPS, R., and ORTIZ, M. An adaptive finite element approach to atomic-scale mechanics-the quasicontinuum method. Journal of the Mechanics and Physics of Solids, 47, 611-642(1999) [12] GAO, H. J., HUANG, Y. G., and ABRAHAM, F. F. Continuum and atomistic studies of intersonic crack propagation. Journal of the Mechanics and Physics of Solids, 49, 2113-2132(2001) [13] SUN, C. T. and ZHANG, H. T. Size-dependent elastic moduli of platelike nanomaterials. Journal of Applied Physics, 93, 1212-1218(2003) [14] NIE, G. H. and YE, H. Elastic constants of ultra-thin plate-type nano-materials using a quasi-continuum model. Proceedings of the International Conference on Heterogeneous Materials Mechanics (ICHMM-2004), Chongqing University Press, Chongqing, 467-470(2004) [15] NIE, G. H. and YE, H. A quasi-continumm model for ultra-thin plate-type nano-materials and its application to bending of such plate structures. Key Engineering Materials, 306-308, 1097-1102(2006) [16] GUO, J. G. and ZHAO, Y. P. The size-dependent elastic properties of nanofilms with surface effects. Journal of Applied Physics, 98, 074306(2005) [17] WANG, C. M., REDDY, J. N., and LEE, K. H. Shear Deformable Beams and Plates:Relationship with Classical Solutions, Elsevier, the Netherlands (2000) [18] HU, H. C. Variational Principle of Elastic Mechanics and Its Application, Science Press, Beijing (1981) [19] BORN, M. and HUANG, K. Dynamic Theory of Crystal Lattices, Oxford University Press, Oxford (1954) [20] ASKAR, A. Lattice Dynamics Foundations of Continuum Theories, World Scientific, Singapore (1984) |