Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (5): 743-760.doi: https://doi.org/10.1007/s10483-022-2849-9
• Articles • Previous Articles Next Articles
Ning YU, Xiangyi FEI, Chuanyu WU, Bo YAN
Received:
2022-01-01
Revised:
2022-03-28
Published:
2022-05-05
Contact:
Bo YAN, E-mail:yanbo@zstu.edu.cn
Supported by:
2010 MSC Number:
Ning YU, Xiangyi FEI, Chuanyu WU, Bo YAN. Modeling and analysis of magnetic spring enhanced lever-type electromagnetic energy harvesters. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 743-760.
[1] AHMAD, M. M. and KHAN, F. U. Review of vibration-based electromagnetic-piezoelectric hybrid energy harvesters. International Journal of Energy Research, 45, 5058-5097(2020) [2] FU, H., MEI, X., YURCHENKO, D., ZHOU, S., THEODOSSIADES, S., NAKANO, K., and YEATMAN, E. M. Rotational energy harvesting for self-powered sensing. Joule, 5, 1074-1118(2021) [3] HUANG, W., TAO, C., JI, H., and QIU, J. Enhancement of wave energy dissipation in twodimensional acoustic black hole by simultaneous optimization of profile and damping layer. Journal of Sound and Vibration, 491, 115764(2021) [4] ZHAO, L. C., ZOU, H. X., YAN, G., LIU, F. R., TAN, T., WEI, K. X., and ZHANG, W. M. Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Conversion and Management, 201, 112166(2019) [5] FANG, S., WANG, S., ZHOU, S., YANG, Z., and LIAO, W. H. Exploiting the advantages of the centrifugal softening effect in rotational impact energy harvesting. Applied Physics Letters, 116, 063903(2020) [6] LI, X., ZHANG, Y. W., DING, H., and CHEN, L. Q. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Applied Mathematics and Mechanics (English Edition), 38(7), 1019-1030(2017) https://doi.org/10.1007/s10483-017-2220-6 [7] ZHAO, L. C., ZOU, H. X., GAO, Q. H., YAN, G., LIU, F. R., TAN, T., WEI, K. X., and ZHANG, W. M. Magnetically modulated orbit for human motion energy harvesting. Applied Physics Letters, 115, 263902(2019) [8] MIAO, G., FANG, S., WANG, S., and ZHOU, S. A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism. Applied Energy, 305, 117838(2022) [9] ZHANG, C. L., LAI, Z. H., LI, M. Q., and YURCHENKO, D. Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator. Journal of Sound and Vibration, 487, 115616(2020) [10] ZHANG, Y., WANG, T., LUO, A., HU, Y., LI, X., and WANG, F. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Applied Energy, 212, 362-371(2018) [11] LEE, Y., KIM, W., BHATIA, D., HWANG, H. J., LEE, S., and CHOI, D. Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy, 38, 326-334(2017) [12] ZHAO, L. C., ZOU, H. X., WU, Z. Y., GAO, Q. H., YAN, G., LIU, F. R., WEI, K. X., and ZHANG, W. M. Dynamically synergistic regulation mechanism for rotation energy harvesting. Mechanical Systems and Signal Processing, 169, 108637(2021) [13] WANG, J., ZHOU, S., ZHANG, Z., and YURCHENKO, D. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 181, 645-652(2019) [14] MANN, B. P. and SIMS, N. D. Energy harvesting from the nonlinear oscillations of magnetic levitation. Journal of Sound and Vibration, 319, 515-530(2009) [15] WANG, J., GENG, L., ZHOU, S., ZHANG, Z., LAI, Z., and YURCHENKO, D. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica, 36, 592-605(2020) [16] MA, X., LI, H., ZHOU, S., YANG, Z., and LITAK, G. Characterizing nonlinear characteristics of asymmetric tristable energy harvesters. Mechanical Systems and Signal Processing, 168, 108612(2022) [17] LU, Z. Q., LI, K., DING, H., and CHEN, L. Q. Nonlinear energy harvesting based on a modified snap-through mechanism. Applied Mathematics and Mechanics (English Edition), 40(1), 167-180(2019) https://doi.org/10.1007/s10483-019-2408-9 [18] QIAN, F., HAJJ, M. R., and ZUO, L. Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting. Energy Conversion and Management, 222, 113174(2020) [19] FU, H., SHARIF-KHODAEI, Z., and ALIABADI, F. A bio-inspired host-parasite structure for broadband vibration energy harvesting from low-frequency random sources. Applied Physics Letters, 114, 143901(2019) [20] FAN, K., CAI, M., LIU, H., and ZHANG, Y. Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy, 169, 356-368(2019) [21] YAN, B., YU, N., ZHANG, L., MA, H., WU, C., WANG, K., and ZHOU, S. Scavenging vibrational energy with a novel bistable electromagnetic energy harvester. Smart Materials and Structures, 29, 025022(2020) [22] ZHOU, S. and ZUO, L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271-284(2018) [23] GATTI, G. A K-shaped spring configuration to boost elastic potential energy. Smart Materials and Structures, 28, 077002(2019) [24] YANG, T., CAO, Q., LI, Q., and QIU, H. A multi-directional multi-stable device:modeling, experiment verification and applications. Mechanical Systems and Signal Processing, 146, 106986(2021) [25] WU, Z. and XU, Q. Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction. Mechanical Systems and Signal Processing, 162, 108043(2022) [26] YAN, B., YU, N., MA, H., and WU, C. A theory for bistable vibration isolators. Mechanical Systems and Signal Processing, 167, 108507(2022) [27] HUANG, D., ZHOU, S., and LITAK, G. Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit. Nonlinear Dynamics, 97, 663-677(2019) [28] YU, N., MA, H., WU, C., YU, G., and YAN, B. Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester. Mechanical Systems and Signal Processing, 156, 107608(2021) [29] WU, Y., LI, S., FAN, K., JI, H., and QIU, J. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mechanical Systems and Signal Processing, 162, 108038(2022) [30] FOONG, F. M., THEIN, C. K., and YURCHENKO, D. A two-stage electromagnetic coupling and structural optimisation for vibration energy harvesters. Smart Materials and Structures, 29, 085030(2020) [31] CAI, M. and LIAO, W. H. Enhanced electromagnetic wrist-worn energy harvester using repulsive magnetic spring. Mechanical Systems and Signal Processing, 150, 107251(2021) [32] ZHAO, L. C., ZOU, H. X., YAN, G., LIU, F. R., TAN, T., ZHANG, W. M., PENG, Z. K., and MENG, G. A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Applied Energy, 239, 735-746(2019) [33] FAN, X., HE, J., MU, J., QIAN, J., ZHANG, N., YANG, C., HOU, X., GENG, W., WANG, X., and CHOU, X. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for selfpowered wireless transmission in Internet of Things and self-powered wind speed sensor. Nano Energy, 68, 104319(2020) [34] ZHANG, L. B., DAI, H. L., YANG, Y. W., and WANG, L. Design of high-e-ciency electromagnetic energy harvester based on a rolling magnet. Energy Conversion and Management, 185, 202-210(2019) [35] FU, H., THEODOSSIADES, S., GUNN, B., ABDALLAH, I., and CHATZI, E. Ultra-low frequency energy harvesting using bi-stability and rotary-translational motion in a magnet-tethered oscillator. Nonlinear Dynamics, 101, 2131-2143(2020) [36] TAN, Q., FAN, K., TAO, K., ZHAO, L., and CAI, M. A two-degree-of-freedom string-driven rotor for e-cient energy harvesting from ultra-low frequency excitations. Energy, 196, 117107(2020) [37] KUHNERT, W. M., GONÇALVES, P. J. P., LEDEZMA-RAMIREZ, D. F., and BRENNAN, M. J. Inerter-like devices used for vibration isolation:a historical perspective. Journal of the Franklin Institute, 358, 1070-1086(2021) [38] FAN, K., CAI, M., WANG, F., TANG, L., LIANG, J., WU, Y., QU, H., and TAN, Q. A stringsuspended and driven rotor for e-cient ultra-low frequency mechanical energy harvesting. Energy Conversion and Management, 198, 111820(2019) [39] ZHANG, A., SOROKIN, V., and LI, H. Energy harvesting using a novel autoparametric pendulum absorber-harvester. Journal of Sound and Vibration, 499, 116014(2021) [40] LIU, C., JING, X., and CHEN, Z. Band stop vibration suppression using a passive X-shape structured lever-type isolation system. Mechanical Systems and Signal Processing, 68-69, 342-353(2016) [41] YILMAZ, C. and KIKUCHI, N. Analysis and design of passive low-pass filter-type vibration isolators considering stifiness and mass limitations. Journal of Sound and Vibration, 293, 171-195(2006) [42] YAN, B., WANG, Z., MA, H., BAO, H., WANG, K., and WU, C. A novel lever-type vibration isolator with eddy current damping. Journal of Sound and Vibration, 494, 115862(2021) [43] JOHN, E. D. A. and WAGG, D. J. Design and testing of a frictionless mechanical inerter device using living-hinges. Journal of the Franklin Institute, 356, 7650-7668(2019) [44] YANG, K., FEI, F., and AN, H. Investigation of coupled lever-bistable nonlinear energy harvesters for enhancement of inter-well dynamic response. Nonlinear Dynamics, 96, 2369-2392(2019) [45] YANG, K., SU, K., WANG, J., WANG, F., HU, G., and GAIDAI, O. Performance evaluation of a dual-piezoelectric-beam vibration energy harvester with a lever and repulsive magnets. Smart Materials and Structures, 29, 075010(2020) [46] ZANG, J., CAO, R. Q., FANG, B., and ZHANG, Y. W. A vibratory energy harvesting absorber using integration of a lever-enhanced nonlinear energy sink and a levitation magnetoelectric energy harvester. Journal of Sound and Vibration, 484, 115534(2020) [47] HUA, R., LIU, H., YANG, H., WANG, Y., and FERRANTE, J. A nonlinear interface integrated lever mechanism for piezoelectric footstep energy harvesting. Applied Physics Letters, 113, 053902(2018) [48] JEON, D. H., CHO, J. Y., JHUN, J. P., AHN, J. H., JEONG, S., JEONG, S. Y., KUMAR, A., RYU, C. H., HWANG, W., PARK, H., CHANG, C., LEE, H., and SUNG, T. H. A lever-type piezoelectric energy harvester with deformation-guiding mechanism for electric vehicle charging station on smart road. Energy, 218, 119540(2021) [49] YAN, B., MA, H., YU, N., ZHANG, L., and WU, C. Theoretical modeling and experimental analysis of nonlinear electromagnetic shunt damping. Journal of Sound and Vibration, 471, 115184(2020) [50] YANG, Z., ERTURK, A., and ZU, J. W. On the e-ciency of piezoelectric energy harvesters. Extreme Mechanics Letters, 15, 26-37(2017) [51] YAN, B., MA, H., ZHAO, C., WU, C., WANG, K., and WANG, P. A vari-stifiness nonlinear isolator with magnetic effects:theoretical modeling and experimental verification. International Journal of Mechanical Sciences, 148, 745-755(2018) |
[1] | Yuan YANG, Nenghui ZHANG, Hanlin LIU, Jiawei LING, Zouqing TAN. Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1547-1562. |
[2] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[3] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
[4] | Jihou YANG, Weixing ZHANG, Xiaodong YANG. Integrated device for multiscale series vibration reduction and energy harvesting [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2227-2242. |
[5] | Rongzhou LIN, Lei HOU, Yi CHEN, Yuhong JIN, N. A. SAEED, Yushu CHEN. A novel adaptive harmonic balance method with an asymptotic harmonic selection [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1887-1910. |
[6] | Wenzheng QUE, Xiaodong YANG, Wei ZHANG. Tunable low frequency band gaps and sound transmission loss of a lever-type metamaterial plate [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1145-1158. |
[7] | Bo YAN, Ning YU, Chuanyu WU. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1045-1062. |
[8] | Qiong WANG, Zewen CHEN, Linchuan ZHAO, Meng LI, Hongxiang ZOU, Kexiang WEI, Xizheng ZHANG, Wenming ZHANG. Enhanced galloping energy harvester with cooperative mode of vibration and collision [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 945-958. |
[9] | K. DEVARAJAN, B. SANTHOSH. Nonlinear dynamics and performance analysis of modified snap-through vibration energy harvester with time-varying potential function [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 185-202. |
[10] | Runqing CAO, Zhijian WANG, Jian ZANG, Yewei ZHANG. Resonance response of fluid-conveying pipe with asymmetric elastic supports coupled to lever-type nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1873-1886. |
[11] | Dengbo ZHANG, Youqi TANG, Ruquan LIANG, Yuanmei SONG, Liqun CHEN. Internal resonance of an axially transporting beam with a two-frequency parametric excitation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1805-1820. |
[12] | Dan WANG, Zhifeng HAO, Fangqi CHEN, Yushu CHEN. Nonlinear energy harvesting with dual resonant zones based on rotating system [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(2): 275-290. |
[13] | Junzheng WU, Nenghui ZHANG. Clamped-end effect on static detection signals of DNA-microcantilever [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1423-1438. |
[14] | Ming LIU, Zhi LI, Xiaodong YANG, Wei ZHANG, C. W. LIM. Dynamic analysis of a deployable/retractable damped cantilever beam [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1321-1332. |
[15] | Xiaofeng GENG, Hu DING, Kexiang WEI, Liqun CHEN. Suppression of multiple modal resonances of a cantilever beam by an impact damper [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 383-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||