[1] PELRINE, R., KORNBLUH, R., PEI, Q., and JOSEPH, J. High-speed electrically actuated elastomers with strain greater than 100%. Science, 287, 836-839(2000) [2] CARPI, F., BAUER, S., and ROSSI, D. D. Stretching dielectric elastomer performance. Science, 330, 1759-1761(2010) [3] AN, L., WANG, F., CHENG, S., LU, T., and WANG, T. J. Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Materials and Structures, 24, 035006(2015) [4] GU, G., ZOU, J., ZHAO, R., ZHAO, X., and ZHU, X. Soft wall-climbing robots. Science Robotics, 3, eaat2874(2018) [5] CHEN, Y., ZHAO, H., MAO, J., CHIRARATTANANON, P., HELBLING, E. F., HYUN, N. S. P., CLARKE, D. R., and WOOD, R. J. Controlled flight of a microrobot powered by soft artificial muscles. nature, 575, 324-329(2019) [6] LI, G., CHEN, X., ZHOU, F., LIANG, Y., XIAO, Y., CAO, X., ZHANG, Z., ZHANG, M., WU, B., YIN, S., XU, Y., FAN, H., CHEN, Z., SONG, W., YANG, W., PAN, B., HOU, J., ZOU, W., HE, S., YANG, X., MAO, G., JIA, Z., ZHOU, H., LI, T., QU, S., XU, Z., HUANG, Z., LUO, Y., XIE, T., GU, J., ZHU, S., and YANG, W. Self-powered soft robot in the mariana trench. nature, 591, 66-71(2021) [7] LI, T., LI, G., LIANG, Y., CHENG, T., DAI, J., YANG, X., LIU, B., ZENG, Z., HUANG, Z., LUO, Y., XIE, T., and YANG, W. Fast-moving soft electronic fish. Science Advances, 3, e1602045(2017) [8] MAFFLI, L., ROSSET, S., GHILARDI, M., CARPI, F., and SHEA, H. Ultrafast all-polymer electrically tunable silicone lenses. Advanced Functional Materials, 25, 1656-1665(2015) [9] CHEN, B., SUN, W., LU, J., YANG, J., CHEN, Y., ZHOU, J., and SUO, Z. All-solid ionic eye. Journal of Applied Mechanics, 88, 1-25(2020) [10] KEPLINGER, C., SUN, J. Y., FOO, C. C., ROTHEMUND, P., WHITESIDES, G. M., and SUO, Z. Stretchable, transparent, ionic conductors. Science, 341, 984-987(2013) [11] WISSLER, M. and MAZZA, E. Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators A:Physical, 138, 384-393(2007) [12] ZHAO, X., HONG, W., and SUO, Z. Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B, 76, 134113(2007) [13] SUO, Z. Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23, 549-578(2010) [14] ZHAO, X. and SUO, Z. Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters, 91, 061921(2007) [15] LENG, J., LIU, L., LIU, Y., YU, K., and SUN, S. Electromechanical stability of dielectric elastomer. Applied Physics Letters, 94, 211901(2009) [16] KOLLOSCHE, M., KOFOD, G., SUO, Z., and ZHU, J. Temporal evolution and instability in a viscoelastic dielectric elastomer. Journal of the Mechanics and Physics of Solids, 76, 47-64(2015) [17] ZHU, J., KOLLOSCHE, M., LU, T., KOFOD, G., and SUO, Z. Two types of transitions to wrinkles in dielectric elastomers. Soft Matter, 8, 8840-8846(2012) [18] HE, T., ZHAO, X., and SUO, Z. Dielectric elastomer membranes undergoing inhomogeneous deformation. Journal of Applied Physics, 106, 083522(2009) [19] CAO, C., CHEN, L., DUAN, W., HILL, T. L., LI, B., CHEN, G., LI, H., LI, Y., WANG, L., and GAO, X. On the mechanical power output comparisons of cone dielectric elastomer actuators. IEEE/ASME Transactions on Mechatronics, 26, 3151-3162(2020) [20] LI, B., LIU, L., and SUO, Z. Extension limit, polarization saturation, and snap-through instability of dielectric elastomers. International Journal of Smart and Nano Materials, 2, 59-67(2011) [21] HUANG, J., LI, T., FOO, C. C., ZHU, J., CLARKE, D. R., and SUO, Z. Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Applied Physics Letters, 100, 041911(2012) [22] LI, T., KEPLINGER, C., BAUMGARTNER, R., BAUER, S., YANG, W., and SUO, Z. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 61, 611-628(2013) [23] O'HALLORAN, A., O'MALLEY, F., and MCHUGH, P. A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, 104, 071101(2008) [24] ZHAO, H., HUSSAIN, A. M., DUDUTA, M., VOGT, D. M., WOOD, R. J., and CLARKE, D. R. Compact dielectric elastomer linear actuators. Advanced Functional Materials, 28, 1804328(2018) [25] HAJIESMAILI, E. and CLARKE, D. R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 10, 183(2019) [26] SUN, W., LIU, F., MA, Z., LI, C., and ZHOU, J. Soft mobile robots driven by foldable dielectric elastomer actuators. Journal of Applied Physics, 120, 084901(2016) [27] WISSLER, M. and MAZZA, E. Modeling and simulation of dielectric elastomer actuators. Smart Materials and Structures, 14, 1396-1402(2005) [28] ZHAO, X. and SUO, Z. Method to analyze programmable deformation of dielectric elastomer layers. Applied Physics Letters, 93, 251902(2008) [29] HENANN, D. L., CHESTER, S. A., and BERTOLDI, K. Modeling of dielectric elastomers:design of actuators and energy harvesting devices. Journal of the Mechanics and Physics of Solids, 61, 2047-2066(2013) [30] FOO, C. C. and ZHANG, Z. Q. A finite element method for inhomogeneous deformation of viscoelastic dielectric elastomers. International Journal of Applied Mechanics, 7, 1550069(2015) [31] QU, S. and SUO, Z. A finite element method for dielectric elastomer transducers. Acta Mechanica Solida Sinica, 25, 459-466(2012) [32] O'BRIEN, B., MCKAY, T., CALIUS, E., XIE, S., and ANDERSON, I. Finite element modelling of dielectric elastomer minimum energy structures. Applied Physics A, 94, 507-514(2008) [33] LIU, J., FOO, C. C., and ZHANG, Z. Q. A 3D multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers. Acta Mechanica Solida Sinica, 30, 374-389(2017) [34] GENT, A. N. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69, 59-61(1996) [35] LI, B., CHEN, H., QIANG, J., HU, S., ZHU, Z., and WANG, Y. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. Journal of Physics D:Applied Physics, 44, 155301(2011) [36] ZHOU, L., WANG, S., LI, L., and FU, Y. An evaluation of the Gent and Gent-Gent material models using inflation of a plane membrane. International Journal of Mechanical Sciences, 146, 39-48(2018) [37] ALIBAKHSHI, A. and HEIDARI, H. Nonlinear dynamics of dielectric elastomer balloons based on the Gent-Gent hyperelastic model. European Journal of Mechanics-A/Solids, 82, 103986(2020) [38] PATRICK, L., GABOR, K., and SILVAIN, M. Characterization of dielectric elastomer actuators based on a hyperelastic film model. Sensors and Actuators A:Physical, 135, 748-757(2007) [39] HAJIESMAILI, E. and CLARKE, D. R. Dielectric elastomer actuators. Journal of Applied Physics, 129, 151102(2021) [40] HOSOYA, N., MASUDA, H., and MAEDA, S. Balloon dielectric elastomer actuator speaker. Applied Acoustics, 148, 238-245(2019) [41] CAO, C., GAO, X., and CONN, A. T. A magnetically coupled dielectric elastomer pump for soft robotics. Advanced Materials Technologies, 4, 1900128(2019) [42] KEPLINGER, C., LI, T., BAUMGARTNER, R., SUO, Z., and BAUER, S. Harnessing snapthrough instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter, 8, 285-288(2011) [43] WANG, Y., LI, Z., QIN, L., CADDY, G., YAP, C. H., and ZHU, J. Dielectric elastomer fluid pump of high pressure and large volume via synergistic snap-through. Journal of Applied Mechanics, 85, 101003(2018) [44] MCCOUL, D. and PEI, Q. Tubular dielectric elastomer actuator for active fluidic control. Smart Materials and Structures, 24, 105016(2015) [45] CHAKRABORTI, P., TOPRAKCI, H. A. K., YANG, P., SPIGNA, N. D., FRANZON, P., and GHOSH, T. A compact dielectric elastomer tubular actuator for refreshable braille displays. Sensors and Actuators A:Physical, 179, 151-157(2012) [46] NASAB, A. M., SABZEHZAR, A., TATARI, M., MAJIDI, C., and SHAN, W. A soft gripper with rigidity tunable elastomer strips as ligaments. Soft Robotics, 4, 411-420(2017) [47] LI, J., LIU, L., LIU, Y., and LENG, J. Dielectric elastomer spring-roll bending actuators:applications in soft robotics and design. Soft Robotics, 6, 69-81(2018) [48] LU, T., AN, L., LI, J., YUAN, C., and WANG, T. J. Electro-mechanical coupling bifurcation and bulging propagation in a cylindrical dielectric elastomer tube. Journal of the Mechanics and Physics of Solids, 85, 160-175(2015) [49] ROTHEMUND, P., AINLA, A., BELDING, L., PRESTON, D. J., KURIHARA, S., SUO, Z., and WHITESIDES, G. M. A soft, bistable valve for autonomous control of soft actuators. Science Robotics, 3, eaar7986(2018) [50] ZHANG, Z., NI, X., WU, H., SUN, M., BAO, G., WU, H., and JIANG, S. Pneumatically actuated soft gripper with bistable structures. Soft Robotics, 9, 57-71(2022) [51] PRESTON, D. J., ROTHEMUND, P., JIANG, H. J., NEMITZ, M. P., RAWSON, J., SUO, Z., and WHITESIDES, G. M. Digital logic for soft devices. Proceedings of the National Academy of Sciences, 116, 7750-7759(2019) [52] HINES, L., PETERSEN, K., and SITTI, M. Inflated soft actuators with reversible stable deformations. Advanced Materials, 28, 3690-3696(2016) [53] BAUMGARTNER, R., KOGLER, A., STADLBAUER, J. M., FOO, C. C., KALTSEIS, R., BAUMGARTNER, M., MAO, G., KEPLINGER, C., KOH, S. J. A., ARNOLD, N., SUO, Z., KALTENBRUNNER, M., and BAUER, S. A lesson from plants:high-speed soft robotic actuators. Advanced Science, 7, 1903391(2020) |