[1] RAFIQUE, S. Piezoelectric Energy Harvesting, Springer, Cham Switzerland (2018) [2] ELVIN, N. and ERTURK, A. Advances in Energy Harvesting Methods, Springer, New York (2013) [3] GLYNNE-JONES, P., TUDOR, M. J., BEEBY, S. P., and WHITE, N. M. An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A, 110, 344-349(2014) [4] WANG, Y. Q. and ZU, J. W. Nonlinear oscillations of sigmoid functionally graded material plates moving in longitudinal direction. Applied Mathematics and Mechanics (English Edition), 38(11), 1533-1550(2017) https://doi.org/10.1007/s10483-017-2277-9 [5] WANG, H., XIE, J., XIE, X., HU, Y., and WANG, J. Nonlinear characteristics of circularcylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode. Applied Mathematics and Mechanics (English Edition), 35(2), 229-236(2014) https://doi.org/10.1007/s10483-014-1786-6 [6] DAQAQ, M. F., MASANA, R., ERTURK, A., and QUINN, D. D. On the role of nonlinearities in vibratory energy harvesting:a critical review and discussion. ASME Applied Mechanics Review, 66(4), 040801(2014) [7] WEI, C. and JING, X. Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Communication in Nonlinear Science and Numerical Simulations, 48, 288-306(2017) [8] LI, X., ZHANG, Y. W., DING, H., and CHEN, L. Q. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Applied Mathematics and Mechanics (English Edition), 38(7), 1019-1030(2017) https://doi.org/10.1007/s10483-017-2220-6 [9] QUINN, D. D., TRIPLETT, A. L., and BERGMAN, L. A. Comparing linear and essentially nonlinear vibration-based energy harvesting. ASME Journal of Vibration and Acoustics, 133(1), 011001(2011) [10] TANG, L., YANG, Y., and SOH, C. K. Toward broadband vibration-based energy harvesting. Journal Intelligent Material Systems and Structures, 21(18), 1867-1897(2010) [11] ZHU, D., TUDOR, M. J., and BEEBY, S. P. Strategies for increasing the operating frequency range of vibration energy harvesters:a review. Measurement Science and Technology, 21(2), 1-29(2010) [12] CAMMARANO, A., BURROW, S. G., and BARTON, D. A. W. Tuning resonant energy harvester using a generalized electrical load. Smart Material and Structure, 19(5), 055003(2010) [13] WEI, C. and JING, X. A comprehensive review on vibration energy harvesting:modeling and realization. Renewable and Sustainable Energy Reviews, 74, 1-18(2017) [14] PELLEGRINI, S., TOLOU, N., SCHENK, M., and HERDER, J. Bistable vibration energy harvesters:a review. Journal of Intelligent Material Systems and Structures, 24(11), 1303-1312(2013) [15] ANDO, B., BAGLIO, S., and TRIGONA, C. Nonlinear mechanism in MEMS devices for energy harvesting applications. Journal of Micromechanics and Microengineerings, 20(12), 1250201(2010) [16] ARRIETA, A. F., HAGEDORN, P., and ERTURK, A. A piezoelectric bistable plate for nonlinear broadband energy harvesting. Applied Physics Letters, 97(10), 1041021(2010) [17] ERTURK, A. and INMAN, D. J. Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. Journal of Sound and Vibration, 330(10), 2339-2353(2011) [18] MANN, B. P. and OWENS, B. A. Investigations of a nonlinear energy harvester with a bistable potential well. Journal of Sound and Vibration, 329(9), 1215-1226(2010) [19] STANTON, S. C., MCGEHEE, C. C., and MANN, B. P. Nonlinear dynamics for broadband energy harvesting:investigation of a bistable piezoelectric inertial generator. Physica D:Nonlinear Phenomena, 239(10), 640-653(2010) [20] HARNE, R. L. and WANG, K. W. A review of the recent research on vibration energy harvesting via bistable systems. Smart Materials and Structures, 22, 023001(2013) [21] ERTURK, A., HOFFMAN, J., and INMAN, D. J. A piezo-magneto-elastic structure for broadband vibration energy harvesting. Applied Physics Letters, 94, 254102(2009) [22] JIANG, W. and CHEN, L. Q. Snap-through piezoelectric energy harvesting. Journal of Sound and Vibration, 333, 4314-4325(2014) [23] MCINNES, C. R., GORMAN, D. G., and CARTMELL, M. P. Enhanced vibrational energy harvesting using nonlinear stochastic resonance. Journal of Sound and Vibration, 318, 655-662(2008) [24] WU, Z., HARNE, R. L., and Wang, K. W. Energy harvester synthesis via coupled linear bistable system with multistable dynamics. ASME Journal of Applied Mechanics, 81(6), 061005(2014) [25] CHEN, L. Q. and JIANG, W. Internal resonance energy harvesting. ASME Journal of Applied Mechanics, 82, 031004(2015) [26] CHEN, L. Q. and JIANG, W. A piezoelectric energy harvester based on internal resonance. Acta Mechanica Sinica, 31(2), 223-228(2015) [27] CHEN, L. Q. and LI, K. Equilibriums and their stabilities of the snap-through mechanism. Archive of Applied Mechanics, 86(3), 403-410(2016) [28] LU, Z. Q., BRENNAN, M. J., YANG, T. J., LI, X. H., and LIU, Z. G. An investigation of a two-stage nonlinear vibration isolation system. Journal of Sound and Vibration, 322, 1456-1464(2013) [29] HU, D., HUANG, L. Y., MAO, X. Y., and CHEN, L. Q. Primary resonance of traveling viscoelastic beam under internal resonance. Applied Mathematics and Mechanics (English Edition), 38(1), 1- 14(2017) https://doi.org/10.1007/s10483-016-2152-6 [30] CARRELLA, A., BRENNAN, M. J., WATERS, T. P., and LOPES, V., JR. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 55, 22-29(2012) [31] KOVACIC, I. and BRENNAN, M. J. The Duffing Equation:Nonlinear Oscillators and Their Behavior, Wiley, Chichester, 219-270(2011) |