[1] KANE, T. R., RYAN, R. R., and BANERJEER, A. K. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control, and Dynamics, 10, 139–151(1987) [2] YOO, H. H. and SHIN, S. H. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration, 212, 807–828(1998) [3] CHUNG, J. and YOO, H. H. Dynamic analysis of a rotating cantilever beam by using the finite element method. Journal of Sound and Vibration, 249, 147–164(2002) [4] KIM, H. and CHUNG, J. Nonlinear modeling for dynamic analysis of a rotating cantilever beam. Nonlinear Dynamics, 86, 1981–2002(2016) [5] YANG, J. B., JIANG, J. B., and CHEN, D. C. Dynamic modelling and control of a rotating Euler-Bernoulli beam. Journal of Sound and Vibration, 274, 863–875(2004) [6] AL-QAISIA, A. A. and AL-BEDOOR, B. O. Evaluation of different methods for the consideration of the effect of rotation on the stiffening of rotating beams. Journal of Sound and Vibration, 280, 531–553(2005) [7] KAYA, M. O. and OZGUMUS, O. O. Energy expressions and free vibration analysis of a rotating uniform Timoshenko beam featuring bending-torsion coupling. Journal of Vibration and Control, 16, 915–934(2010) [8] BANERJEE, J. R. Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. Journal of Sound and Vibration, 233, 857–875(2000) [9] BANERJEE, J. R. Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams. Journal of Sound and Vibration, 247, 97–115(2001) [10] BANERJEE, J. R. and KENNERDY, D. Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. Journal of Sound and Vibration, 333, 7299–7312(2014) [11] ZENG, J., MA, H., YU, K., XU, Z. T., and WEN, B. C. Coupled flapwise-chordwise-axialtorsional dynamic responses of rotating pre-twisted and inclined cantilever beams subject to the base excitation. Applied Mathematics and Mechanics (English Edition), 40(6), 1053–1082(2019) https://doi.org/10.1007/s10483-019-2506-6 [12] WANG, L. S., SU, Z., and WANG, L. F. Flutter analysis of rotating beams with elastic restraints. Applied Mathematics and Mechanics (English Edition), 43(5), 761–776(2022) https://doi.org/10.1007/s10483-022-2850-6 [13] VIGNERON, F. R. Comment on “Mathematical modeling of spinning elastic bodies for modal analysis”. AIAA Journal, 13, 126–127(1975) [14] LIU, J. Y. and HONG, J. Z. Dynamic modeling and modal truncation approach for a high-speed rotating elastic beam. Archive of Applied Mechanics (Ingenieur Archiv), 72, 554–563(2002) [15] YANG, H., HONG, J. Z., and YU, Z. Dynamics modelling of a flexible hub-beam system with a tip mass. Journal of Sound and Vibration, 266, 759–774(2003) [16] CAI, G. P., HONG, J. Z., and YANG, S. X. Dynamic analysis of a flexible hub-beam system with tip mass. Mechanics Research Communications, 32, 173–190(2005) [17] LI, L., ZHANG, D. G., and ZHU, W. D. Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect. Journal of Sound and Vibration, 333, 1526–1541(2014) [18] SHARF, I. Geometrically non-linear beam element for dynamics simulation of multibody systems. International Journal for Numerical Methods in Engineering, 39, 763–786(1996) [19] ARVIN, H. and BAKHTIARI-NEJAD, F. Non-linear modal analysis of a rotating beam. International Journal of Non-Linear Mechanics, 46, 877–897(2011) [20] HUANG, C. L., LIN, W. Y., and HSIAO, K. M. Free vibration analysis of rotating Euler beams at high angular velocity. Computers and Structures, 88, 991–1001(2010) [21] WANG, F. X. Model reduction with geometric stiffening nonlinearities for dynamic simulations of multibody systems. International Journal of Structural Stability and Dynamics, 13, 1350046(2013) [22] ZHAO, G. W. and WU, Z. G. Coupling vibration analysis of rotating three-dimensional cantilever beam. Computers and Structures, 179, 64–74(2017) [23] BERZERI, M. and SHABANA, A. A. Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 7, 357–387(2002) [24] ZHANG, X. S., ZHANG, D. G., CHEN, S. J., and HONG, J. Z. Modal characteristics of a rotating flexible beam with a concentrated mass based on the absolute nodal coordinate formulation. Nonlinear Dynamics, 88, 61–77(2016) [25] CHEN, Y. Z., ZHANG, D. G., and LI, L. Dynamic analysis of rotating curved beams by using absolute nodal coordinate formulation based on radial point interpolation method. Journal of Sound and Vibration, 441, 63–83(2019) [26] THOMAS, O., SENECHAL, A., and DEU, J. F. Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dynamics, 86, 1293–1318(2016) [27] PESHECK, E., PIERRE, C., and SHAW, S. W. Modal reduction of a nonlinear rotating beam through nonlinear normal modes. Transactions of ASME Journal of Vibration and Acoustics, 124, 229–236(2002) [28] KIM, H., YOO, H. H., and CHUNG, J. Dynamic model for free vibration and response analysis of rotating beams. Journal of Sound and Vibration, 332, 5917–5928(2013) [29] SIMO, J. C. and VU-QUOC, L. The role of non-linear theories in transient dynamic analysis of flexible structures. Journal of Sound and Vibration, 119, 487–508(1987) [30] BEKHOUCHA, F., RECHAK, S., DUIGOU, L., and CADOU, J. M. Nonlinear free vibrations of centrifugally stiffened uniform beams at high angular velocity. Journal of Sound and Vibration, 379, 177–190(2016) [31] LEE, S. Y., SHEU, J. J., and LIN, S. M. In-plane vibrational analysis of rotating curved beam with elastically restrained root. Journal of Sound and Vibration, 315, 1086–1102(2008) [32] TRINDADE, M. A. and SAMPAIO, R. Dynamics of beams undergoing large rotations accounting for arbitrary axial deformation. Journal of Guidance, Control, and Dynamics, 25, 634–643(2002) |