[1] HEIN, J. R., KOSCHINSKY, A., and KUHN, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nature Reviews Earth & Environment, 1, 158-169(2020) [2] OHTA, J., YASUKAWA, K., NAKAMURA, K., FUJINAGA, K., IIJIMA, K., and KATO, Y. Geological features and resource potential of deep-sea mud highly enriched in rare-earth elements in the Central Pacific Basin and the Penrhyn Basin. Ore Geology Reviews, 139, 104440(2021) [3] WATZEL, R., RÜHLEMANN, C., and VINK, A. Mining mineral resources from the seabed: opportunities and challenges. Marine Policy, 114, 103828(2020) [4] KANG, Y. J. and LIU, S. J. The development history and latest progress of deep-sea polymetallic nodule mining technology. Minerals, 11(10), 1132(2021) [5] HUANG, H., WANG, L., OU, D. Y., LI, W. W., KUANG, F. F., LIN, C., HE, X. B., AN, L. B., and WANG, W. B. A preliminary evaluation of some elements for designation of preservation and impact reference zones in deep-sea in the Clarion-Clipperton Zone: a case study of the China ocean mineral resources association contract area. Ocean & Coastal Management, 188(15), 105135(2020) [6] HAFFERT, L., HAECKEL, M., STIGTER, H. D., and JANSSEN, F. Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry. Biogeosciences, 17(10), 2767-2789(2020) [7] DAI, Y., LI, X. Y., YIN, W. W., HUANG, Z. H., and XIE, Y. Dynamics analysis of deep-sea mining pipeline system considering both internal and external flow. Marine Georesources & Geotechnology, 39(4), 408-418(2021) [8] YANG, J. M., LIU, L., LYU, H. N., and LIN, Z. Q. Deep-sea mining equipment in China: current status and prospect (in Chinese). Strategic Study of Chinese Academy of Engineering, 22(6), 1-9(2020) [9] LENG, D. X., SHAO, S., XIE, Y. C., WANG, H. H., and LIU, G. J. A brief review of recent progress on deep-sea mining vehicle. Ocean Engineering, 228(15), 108565(2021) [10] XU, F., RAO, Q. H., and MA, W. B. Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment. Journal of Oceanology and Limnology, 36(2), 230-237(2018) [11] YU, Y. J., DUAN, L. C., WANG, H. F., DUAN, X., and ZHU, K. J. Preliminary study on physicomechanical properties of deep-sea sediments from the Western Pacific (in Chinese). Mining and Metallurgical Engineering, 36(5), 1-4(2016) [12] LYU, W. Z., HUANG, Y. X., ZHANG, G. Z., and BAO, G. S. Geology of Deposits in the Chinese Pioneering Area of Pacific Polymetallic Nodules, Ocean Press, Beijing (2008) [13] WANG, X., XUE, C., and LI, H. Nonlinear primary resonance analysis for a coupled thermopiezoelectric-mechanical model of piezoelectric rectangular thin plates. Applied Mathematics and Mechanics (English Edition), 40(8), 1155-1168(2019) https://doi.org/10.1007/s10483-019-2510-6 [14] ABOUELREGAL, A. E., AHMAD, H., YAHYA, A. M. H., SAIDI, A., and ALFADIL, H. Generalized thermoelastic responses in an infinite solid cylinder under the thermoelastic-diffusion model with four lags. Chinese Journal of Physics, 76, 121-134(2022) [15] LORD, H. W. and SHULMAN, Y. A. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15(5), 299-309(1967) [16] GREEN A. E. and LINDSAY, K. A. Thermoelasticity. Journal of Elasticity, 2(1), 1-7(1972) [17] AHMAD, H., ABOUELREGAL, A. E., BENHAMED, M., ALOTAIBI, M. F., and JENDOUBI, A. Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity. Scientific Reports, 12(1), 1-18(2022) [18] BAI, B. Effects of coupling schemes of thermo hydro-mechanical governing equations for saturated porous medium (in Chinese). Rock and Soil Mechanics, 27(4), 519-524(2006) [19] YAN, R. T. and ZHANG, Q. A constitutive model of expansive clay considering thermo-hydromechanical coupling effect. Environmental Earth Sciences, 78(9), 1-12(2019) [20] GUO, Y., ZHU, H. B., XIONG, C. B., and YU, L. N. A two-dimensional generalized thermohydro-mechanical-coupled problem for a poroelastic half-space. Waves in Random and Complex Media, 30(4), 738-758(2020) [21] GUO, Y. and XIONG, C. B. Influence of the viscoelastic relaxation time on a foundation under generalized poro-thermoelasticity. Waves in Random and Complex Media, 2021(2), 1-31(2021) [22] GUO, Y., LI, W. J., MA, J. J., LIANG, B., and XIONG, C. B. Dynamic coupled thermo-hydromechanical problem for saturated porous viscoelastic foundation (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 53(4), 1081-1092(2021) [23] XIONG, C. B., GUO, Y., and DIAO, Y. Normal mode analysis to a poroelastic half-space problem under generalized thermoelasticity. Latin American Journal of Solids and Structures, 14(5), 930-949(2017) [24] XIONG, C. B., GUO, Y., and DIAO, Y. Dynamic problem of saturated soil under the fractional order theory of thermoelasticity. Journal of Porous Media, 23(4), 311-325(2020) [25] QIN, B., CHEN, Z. H., FANG, Z. D., SUN, S. G., FANG, X. W., and WANG, J. Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I. Applied Mathematics and Mechanics (English Edition), 31(12), 1561-1576(2010) https://doi.org/10.1007/s10483-010-1384-6 [26] BAI, B., ZHOU, R., CAI, G., HU, W., and YANG, G. G. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics. Computers and Geotechnics, 137(8), 104272(2021) [27] ZHU, W., SHI, X. Y., HUANG, R., HUANG, L. Y., and MA, W. B. Research on coupled thermohydro-mechanical dynamic response characteristics of saturated porous deep-sea sediments under vibration of mining vehicle. Applied Mathematics and Mechanics (English Edition), 42(9), 1349-1362(2021) https://doi.org/10.1007/s10483-021-2768-5 [28] CHI, S. B., LEE, H. B., KIM, J. U., HYEONG, K. S., KO, Y. T., and LEE, K. Y. Mass physical properties in deep-sea sediment from the clarion-clipperton fracture zone, northeast equatorial pacific. Economic and Environmental Geology, 39(6), 739-752(2006) [29] MA, W. B., LI, J. P., CAI, Q., ZHU, W., YANG, C. Q., and GUO, S. C. Influence of surface roughness on the adhesion force between the titanium plate and deep-sea sediment. Marine Georesources & Geotechnology, 39(12), 1516-1524(2021) [30] ALHARBI, A. M., OTHMAN, M. I. A., and ATEF, H. M. Thomson effect with hyperbolic twotemperature on magneto-thermo-visco-elasticity. Applied Mathematics and Mechanics (English Edition), 42(9), 1311-1326(2021) https://doi.org/10.1007/s10483-021-2763-7 [31] ZHOU, Q. J., LI, X. S., HUANG, B. G., LIU, L. J., GAO, S., ZHOU, H., LIU, J., LIU, B. H., and ZHANG, C. Y. Inversion of the physical properties of seafloor surface sediments based on AUV sub-bottom profile data in the northern slope of the south china sea. Scientific Reports, 11(1), 1-11(2021) [32] ZHU, C. Q., ZHOU, L., ZHANG, H., JIAO, X. R., JIANG, J., SHENG, H. G., and JIA, Y. G. Preliminary study of physical and mechanical properties of surface sediment in Northern South China Sea (in Chinese). Journal of Engineering Geology, 25(6), 1566-1573(2017) [33] MIHAI, L. A. and GORIELY, A. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Royal Society, 473(2207), 1-32(2017) [34] NING, L. and KAYA, M. Power law for elastic moduli of unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 140(1), 46-56(2014) [35] LIU, X. L., ZHANG, X. M., WANG, H., and JIANG, B. Y. Laboratory testing and analysis of dynamic and static resilient modulus of subgrade soil under various influencing factors. Construction and Building Materials, 195(20), 178-186(2019) [36] XIONG, C. B., HU, Q. Q., and GUO, Y. Dynamic response of saturated porous elastic foundation under porosity anisotropy (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 52(4), 1120-1130(2020) [37] YOU, L. Y., YAN, K. Z., HU, Y. B., and ZOLLINGER, D. G. Spectral element solution for transversely isotropic elastic multi-layered structures subjected to axisymmetric loading. Computers and Geotechnics, 72, 67-73(2016) [38] YOU, L. Y., YAN, K. Z., MAN, J., and SHI, T. 3D spectral element solution of multilayered half-space medium with harmonic moving load: effect of layer, interlayer, and loading properties on dynamic response of medium. International Journal of Geomechanics, 20(12), 04020227(2020) [39] MAN, J., YAN, K. Z., MIAO, Y., LIU, Y., YANG, X., DIAB, A., and YOU, L. Y. 3D spectral element model with a space-decoupling technique for the response of transversely isotropic pavements to moving vehicular loading. Road Materials and Pavement Design, 23(11), 2567-2591(2022) [40] GUO, Z. G. and BAI, B. Effect of saturation on thermo-hydro-mechanical coupled responses in porous media (in Chinese). Chinese Journal of Geotechnical Engineering, 40(6), 1021-1028(2018) [41] ZHU, W., PAN, J. X., MA, W. B., DENG, S., ZHOU, W. J., LIU, W. Y., LONG, S. G., YANG, C. Q., and YOU, L. Y. Dynamic response of the heterogeneous deep-sea sediment with nonlinear gradient modulus to mining machine loading. Marine Georesources & Geotechnology, 40(3), 255-266(2022) [42] ZHU, W., PAN, J. X., YOU, L. Y., and MA, W. B. Dynamic response analysis of deep-sea sediments with heterogeneity under moving non-uniform mining collector loading. Journal of Engineering Mechanics, 148(3), 04021159(2022) |