[1] Wilson, E. L., Farhoomand, I., and Bathe K. J. Nonlinear dynamic analysis of complex structures. Earthquake Engineering and Structural Dynamics, 1, 241-252 (1972)
[2] Chung, J. and Hulbert G. M. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- method. Journal of Applied Mechanics, 60, 371-375 (1993)
[3] Bathe, K. J. Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Computers and Structures, 85, 437-445 (2007)
[4] Liu, T., Zhao, C., Li, Q., and Zhang, L. An efficient backward Euler time-integration method for nonlinear dynamic analysis of structures. Computers and Structures, 106/107, 20-28 (2012)
[5] Dokainish, M. A. and Subbaraj, K. A survey of direct time-integration methods in computational structural dynamics I: explicit methods. Computers and Structures, 32, 1371-1386 (1989)
[6] Mullen, R. and Belytschko, T. An analysis of an unconditionally stable explicit method. Computers and Structures, 16, 691-696 (1983)
[7] Chung, J. and Lee, J. M. A new family of explicit time integration methods for linear and non-linear structural dynamics. International Journal for Numerical Methods in Engineering, 37, 3961-3976 (1994)
[8] Subbaraj, K. and Dokainish, M. A. A survey of direct time-integration methods in computational structural dynamics II: implicit methods. Computers and Structures, 32, 1387-1401 (1989)
[9] Bathe, K. J. and Noh, G. Insight into an implicit time integration scheme for structural dyanmics. Computers and Structures, 98/99, 1-6 (2012)
[10] Rougier, E., Munjiza, A., and John, N. W. M. Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics. International Journal for Numerical Methods in Engineering, 61, 856-879 (2004)
[11] Xie, Y. M. An assessment of time integration schemes for non-linear equations. Journal of Sound and Vibration, 192, 321-331 (1996)
[12] Hulbert, G. M. and Chung, J. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering, 137, 175-188 (1996)
[13] Chang, S. Y. and Liao, W. I. An unconditionally stable explicit method for structural dynamics. Journal of Earthquake Engineering, 9, 349-370 (2005)
[14] Noh, G., Ham, S., and Bathe, K. J. Performance of an implicit time integration scheme in the analysis of wave propagations. Computers and Structures, 123, 93-105 (2013)
[15] Noh, G. and Bathe, K. J. An explicit time integration scheme for the analysis of wave propagations. Computers and Structures, 129, 178-193 (2013)
[16] Rostami, S., Shojaee, S., and Moeinadini, A. A parabolic acceleration time integration method for structural dynamics using quartic B-spline functions. Applied Mathematical Modelling, 36, 5162-5182 (2012)
[17] Wen,W. B., Jian, K. L., and Luo, S. M. An explicit time integration method for structural dynam-ics using septuple B-spline functions. International Journal for Numerical Methods in Engineering, 97, 629-657 (2014)
[18] Wen, W. B., Luo, S. M., and Jian, K. L. A novel time integration method for structural dynamics utilizing uniform quintic B-spline functions. Archive of Applied Mechanics, 85, 1743-1759 (2015)
[19] Wen, W. B., Jian, K. L., and Luo, S. M. 2D numerical manifold method based on quartic uni-form B-spline interpolation and its application in thin plate bending. Applied Mathematics and Mechanics (English Edition), 34, 1017-1030 (2013) DOI 10.1007/s10483-013-1724-x |