Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (2): 289-304.doi: https://doi.org/10.1007/s10483-025-3214-9
Previous Articles Next Articles
Wenkai ZHANG1, C. S. LU2, Minghao ZHAO1,3, Cuiying FAN1, Huayang DANG1,†()
Received:
2024-09-22
Revised:
2024-12-08
Online:
2025-02-03
Published:
2025-02-02
Contact:
Huayang DANG, E-mail: danghuayang@zzu.edu.cnSupported by:
2010 MSC Number:
Wenkai ZHANG, C. S. LU, Minghao ZHAO, Cuiying FAN, Huayang DANG. On the interfacial behavior of a one-dimensional hexagonal piezoelectric quasicrystal film based on the beam theory. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 289-304.
[1] | DUBOIS, J. M., KANG, S. S., and VONSTEBUT, J. Quasi-crystalline low-friction coatings. Journal of Materials Science Letters, 10(9), 537–541 (1991) |
[2] | THIEL, P. A. and DUBOIS, J. M. Quasicrystals. Reaching maturity for technological applications. Materials Today, 2(3), 3–7 (1999) |
[3] | DUBOIS, J. M. New prospects from potential applications of quasicrystalline materials. Materials Science & Engineering A, 294, 4–9 (2000) |
[4] | USTINOV, A. I. and POLISCHUK, S. S. Analysis of the texture of heterogeneous Al-Cu-Fe coatings containing quasicrystalline phase. Scripta Materialia, 47, 881–886 (2002) |
[5] | MENG, X. M., TONG, B. Y., and WU, Y. K. Mechanical properties of Al65Cu20Co15. Acta Metallurgica Sinica, 30, 60–64 (1994) |
[6] | GUO, X. P., CHEN, J. F., YU, H. L., LIAO, H. L., and CODDET, C. A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surface & Coatings Technology, 268, 94–98 (2015) |
[7] | WANG, S., SUN, X. H., LI, W. Y., LIU, W., JIANG, L., and HAN, J. Fabrication of photonic quasicrystalline structures in the sub-micrometer scale. Micro and Nanostructures, 93, 122–127 (2016) |
[8] | KAMIYA, K., TAKEUCHI, T., KABEYA, N., WADA, N., ISHIMASA, T., OCHIAI, A., DEGUCHI, K., IMURA, K., and SATO, N. K. Discovery of superconductivity in quasicrystal. Nature Communication, 9, 154 (2018) |
[9] | TOKUMOTO, Y., HAMANO, K., NAKAGAWA, S., KAMIMURA, Y., SUZUKI, S., TAMURA, R., and EDAGAWA, K. Superconductivity in a van der Waals layered quasicrystal. Nature Communication, 15, 1529 (2024) |
[10] | FÖRSTER, S., MEINEL, K., HAMMER, R., TRAUTMANN, M., and WIDDRA, W. Quasicrystalline structure formation in a classical crystalline thin-film system. nature, 502(7470), 215–218 (2013) |
[11] | JBAILY, A. and YEUNG, R. W. Piezoelectric devices for ocean energy: a brief survey. Journal of Ocean Engineering and Marine Energy, 1, 101–118 (2015) |
[12] | AGIASOFITOU, E. and LAZAR, M. On the constitutive modelling of piezoelectric quasicrystals. Crystals, 13, 1652 (2023) |
[13] | HU, C., WANG, R., and DING, D. H. Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystal. Reports on Progress in Physics, 63, 1–39 (2000) |
[14] | ALTAY, G. and DÖKMECI, M. C. On the fundamental equations of piezoelectricity of quasicrystal media. International Journal of Solids and Structures, 49, 3255–3262 (2012) |
[15] | LI, X. Y., LI, P. D., WU, T. H., SHI, M. X., and ZHU, Z. W. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Physics Letters A, 378, 826–834 (2014) |
[16] | LI, X. Y., WANG, T., ZHENG, R. F., and KANG, G. Z. Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 95(5), 457–468 (2015) |
[17] | YANG, J., XU, Y., DING, S. H., and LI, X. Dynamic fracture of a partially permeable crack in a functionally graded one-dimensional hexagonal piezoelectric quasicrystal under a time-harmonic elastic SH-wave. Mathematics and Mechanics of Solids, 28(9), 1939–1958 (2023) |
[18] | GOVORUKHA, V. and KAMLAH, M. Analysis of an interface crack with multiple electric boundary conditions on its faces in a one-dimensional hexagonal quasicrystal bimaterial. Archive of Applied Mechanics, 94(3), 589–607 (2024) |
[19] | LOBODA, V., SHEVELEVA, A., KOMAROV, O., CHAPELLE, F., and LAPUSTA, Y. Arbitrary number of electrically permeable cracks on the interface between two one-dimensional piezoelectric quasicrystals with piezoelectric effect. Engineering Fracture Mechanics, 276, 108878 (2022) |
[20] | SU, M. and XIAO, J. Mode III fracture analysis of a nanoscale elliptical hole with four cracks in one-dimensional hexagonal piezoelectric quasicrystals. Engineering Fracture Mechanics, 274, 108776 (2022) |
[21] | LI, L., LI, X., and LI, L. Study on effective electroelastic properties of one-dimensional hexagonal piezoelectric quasicrystal containing randomly oriented inclusions. Modern Physics Letters B, 37(20), 2350043 (2023) |
[22] | HU, K., MEGUID, S. A., WANG, L., and JIN, H. Electro-elastic field of a piezoelectric quasicrystal medium containing two cylindrical inclusions. Acta Mechanica, 232(7), 2513–2533 (2021) |
[23] | HU, K., MEGUID, S. A., ZHONG, Z., and GAO, C. F. Partially debonded circular inclusion in one-dimensional quasicrystal material with piezoelectric effect. International Journal of Mechanics and Materials in Design, 16(4), 749–766 (2020) |
[24] | ZHANG, Z., LI, X., and DING, S. Analytical solution of the interference between elliptical inclusion and screw dislocation in one-dimensional hexagonal piezoelectric quasicrystal. Crystals, 13(10), 1419 (2023) |
[25] | LI, L., CUI, X., and GUO, J. Interaction between a screw dislocation and an elliptical hole with two asymmetrical cracks in a one-dimensional hexagonal quasicrystal with piezoelectric effect. Applied Mathematics and Mechanics (English Edition), 41(6), 899–908 (2020) https://doi.org/10.1007/s10483-020-2615-6 |
[26] | LI, L. and LIU, G. Study on a straight dislocation in an icosahedral quasicrystal with piezoelectric effects. Applied Mathematics and Mechanics (English Edition), 39(9), 1259–1266 (2018) https://doi.org/10.1007/s10483-018-2363-9 |
[27] | YANG, J. and LI, X. Analytical solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects. Theoretical and Applied Fracture Mechanics, 82, 17–24 (2016) |
[28] | ZHAO, Z. and GUO, J. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals. Applied Mathematics and Mechanics (English Edition), 42(5), 625–640 (2021) https://doi.org/10.1007/s10483-021-2721-5 |
[29] | LI, Y. S. and XIAO, T. Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory. Applied Mathematical Modelling, 96, 733–750 (2021) |
[30] | ZHANG, L., HUO, J. H., and XING, Y. M. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. International Journal of Solids and Structures, 132-133, 278–302 (2018) |
[31] | FENG, X., KE, L., and GAO, Y. Love wave propagation in one-dimensional piezoelectric quasicrystal multilayered nanoplates with surface effects. Applied Mathematics and Mechanics (English Edition), 45(4), 619–632 (2024) https://doi.org/10.1007/s10483-024-3104-9 |
[32] | ARUTIUNIAN, N. K. Contact problem for a half-plane with elastic reinforcement. Journal of Applied Mathematics and Mechanics, 32(4), 652–665 (1968) |
[33] | ERDOGAN, F. and GUPTA, G. D. The problem of an elastic stiffener bonded to a half plane. Journal of Applied Mechanics, 38, 937–941 (1971) |
[34] | ERDOGAN, F. and JOSEPH, P. F. Mechanical modeling of multilayered films on an elastic substrate, part I: analysis. Journal of Electronic Packaging, 112, 309–316 (1990) |
[35] | ABBASZADEH-FATHABADI, S. A., ALINIA, Y., and GÜLER, M. A. On the mechanics of a double thin film on a finite thickness substrate. International Journal of Solids and Structures, 279, 112349 (2023) |
[36] | ALINIA, Y. and GÜLER, M. A. On the problem of an axisymmetric thin film bonded to a transversely isotropic substrate. International Journal of Solids and Structures, 248, 111636 (2022) |
[37] | LI, D. K., CHEN, P. J., LIU, H., PENG, Z. L., GÜLER, M. A., and CHEN, S. H. The interfacial behavior of an axisymmetric film bonded to a graded inhomogeneous substrate. Mechanics of Materials, 193, 104983 (2024) |
[38] | CHEN, P. J., CHEN, S. H., LIU, H., PENG, J., and GAO, F. The interface behavior of multiple piezoelectric films attaching to a finite-thickness gradient substrate. Journal of Applied Mechanics, 87, 011003 (2020) |
[39] | GUO, W., CHEN, P. J., LIU, H., ZHU, J., and WU, Y. Interfacial behavior of thin film bonded to plastically graded substrate under tensile loading. European Journal of Mechanics A-Solids, 97, 104818 (2023) |
[40] | LANZONI, L. and RADI, E. Thermally induced deformations in a partially coated elastic layer. International Journal of Solids and Structures, 46, 1402–1412 (2009) |
[41] | WANG, X. D. and MEGUID, S. A. On the electroelastic behaviour of a thin piezoelectric actuator attached to an infinite host structure. International Journal of Solids and Structures, 37, 3231–3251 (2000) |
[42] | JIN, C. R. and WANG, X. D. Analytical modelling of the electromechanical behaviour of surface-bonded piezoelectric actuators including the adhesive layer. Engineering Fracture Mechanics, 78, 2547–2562 (2011) |
[43] | SHIELD, T. W. and KIM, K. S. Beam theory models for thin film segments cohesively bonded to an elastic half space. International Journal of Solids and Structures, 29, 1085–1103 (1992) |
[44] | HUANG, Y. G., NGO, D., and ROSAKIS, A. J. Non-uniform, axisymmetric misfit strain: in thin films bonded on plate substrates/substrate systems: the relation between non-uniform film stresses and system curvatures. Acta Mechanica Sinica, 21, 362–370 (2005) |
[45] | FENG, X., HUANG, Y. G., JIANG, H. Q., NGO, D., and ROSAKIS, A. J. The effect of thin film/substrate radii on the stoney formula for thin film/substrate subjected to nonuniform axisymmetric misfit strain and temperature. Journal of Mechanics and Material Structures, 1(6), 1041–1053 (2006) |
[46] | ZHOU, Y. T., TIAN, X. J., and DING, S. H. Microstructure size-dependent contact behavior of a thermoelectric film bonded to an elastic substrate with couple stress theory. International Journal of Solids and Structures, 256, 111982 (2022) |
[47] | RADI, E., NOBILI, A., and GULER, M. A. Indentation of a free beam resting on an elastic substrate with an internal length scale. European Journal of Mechanics-A/Solids, 100, 104804 (2023) |
[48] | DANG, H. Y., QI, D. P., ZHAO, M. H., FAN, C. Y., and LU, C. S. Thermal-induced interfacial behavior of a thin one-dimensional hexagonal quasicrystal film. Applied Mathematics and Mechanics (English Edition), 44(5), 841–856 (2023) https://doi.org/10.1007/s10483-023-2989-7 |
[49] | DANG, H. Y., QI, D. P., FAN, C. Y., LU, C. S., and ZHAO, M. H. On the interfacial behavior of two-dimensional decagonal quasicrystal films with an adhesive layer due to thermal misfit. Engineering Fracture Mechanics, 303, 110119 (2024) |
[50] | DANG, H. Y., QI, D. P., ZHAO, M. H., FAN, C. Y., and LU, C. S. The thermally induced interfacial behavior of a thin two-dimensional decagonal quasicrystal film. International Journal of Fracture, 246(2-3), 103–116 (2024) |
[51] | FAN, T. Y., XIE, L. Y., FAN, L., and WANG, Q. Z. Interface of quasicrystal and crystal. Chinese Physics B, 20(7), 076102 (2011) |
[52] | MUSKHELISHVILI, N. I. Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen (1953) |
[1] | N. D. NGUYEN, T. N. NGUYEN. Chebyshev polynomial-based Ritz method for thermal buckling and free vibration behaviors of metal foam beams [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 891-910. |
[2] | Huayang DANG, Dongpei QI, Minghao ZHAO, Cuiying FAN, C.S. LU. Thermal-induced interfacial behavior of a thin one-dimensional hexagonal quasicrystal film [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 841-856. |
[3] | Juan PENG, Dengke LI, Zaixing HUANG, Guangjian PENG, Peijian CHEN, Shaohua CHEN. Interfacial behavior of a thermoelectric film bonded to a graded substrate [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1853-1870. |
[4] | Shaopeng WANG, Jun HONG, Dao WEI, Gongye ZHANG. Bending and wave propagation analysis of axially functionally graded beams based on a reformulated strain gradient elasticity theory [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1803-1820. |
[5] | Qingdong CHAI, Yanqing WANG, Meiwen TENG. Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1203-1218. |
[6] | S. ABBASBANDY, J. HAJISHAFIEIHA. Numerical solution to the Falkner-Skan equation: a novel numerical approach through the new rational a-polynomials [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1449-1460. |
[7] | N. V. VIET, W. ZAKI, Quan WANG. Free vibration characteristics of sectioned unidirectional/bidirectional functionally graded material cantilever beams based on finite element analysis [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1787-1804. |
[8] | Yong HUANG. Bending and free vibrational analysis of bi-directional functionally graded beams with circular cross-section [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(10): 1497-1516. |
[9] | Xuan WANG, Shirong LI. Free vibration analysis of functionally graded material beams based on Levinson beam theory [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(7): 861-878. |
[10] | R. KOLAHCHI, A. M. MONIRI BIDGOLI. Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 265-274. |
[11] | Shirong LI, Zeqing WAN, Xuan WANG. Homogenized and classical expressions for static bending solutions for functionally graded material Levinson beams [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 895-910. |
[12] | S. ABBASBANDY;T. HAYAT;H. R. GHEHSAREH;A.ALSAEDI. MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(8): 921-930. |
[13] | Bo WANG;Zi-chenDENG;Kai ZHANG. Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(3): 269-280. |
[14] | ZHAN Jie-Min;LI Yu-Xiang;DONG Zhi. Chebyshev finite spectral method with extended moving grids [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(3): 383-392. |
[15] | Hani I. Siyyam. AN ACCURATE SOLUTION OF THE POISSON EQUATION BY THE FINITE DIFFERENCE-CHEBYSHEV-TAU METHOD [J]. Applied Mathematics and Mechanics (English Edition), 2001, 22(8): 935-939. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||