Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (12): 2385-2406.doi: https://doi.org/10.1007/s10483-025-3324-7
Previous Articles Next Articles
Haotong BAI1,2, Yixin YANG1,2,†(
), Wenjia XIE2, Dejian LI3, Mingbo SUN1,2
Received:2025-06-28
Revised:2025-09-29
Published:2025-11-28
Contact:
Yixin YANG, E-mail: yangyixin@nudt.edu.cnSupported by:2010 MSC Number:
Haotong BAI, Yixin YANG, Wenjia XIE, Dejian LI, Mingbo SUN. Exact solutions for the transcritical Riemann problem of two-parameter fluids. Applied Mathematics and Mechanics (English Edition), 2025, 46(12): 2385-2406.
Table 5
Relative error in calculation of ideal gas and improved ideal gas"
| Case | EoS | Error (shock speed)/% | Error (experimental head)/% | Error (experimental tail)/% | |||
|---|---|---|---|---|---|---|---|
| 2 | Ideal gas | 0.49 | 2.25 | 4.95 | 1.02 | 7.65 | 8.30 |
| Improved | 4.83 | 1.40 | 2.59 | 1.49 | 0.98 | 12.2 | |
| 3 | Ideal gas | 0 | 1.53 | 0 | 9.18 | – | – |
| Improved | 0 | 1.12 | 0 | 6.72 | – | – | |
| 4 | Improved | 15.09 | 1.86 | 19.18 | 23.0 | 12.7 | 3.92 |
| [18] | KUILA, S., RAJA SEKHAR, T., and ZEIDAN, D. A robust and accurate Riemann solver for a compressible two-phase flow model. Applied Mathematics and Computation, 265(2), 681–695 (2015) |
| [19] | KUILA, S. and SEKHAR, T. R. Riemann solution for one dimensional non-ideal isentropic magnetogasdynamics. Computational and Applied Mathematics, 35(1), 119–133 (2014) |
| [20] | WANG, J. C. H. and HICKEY, J. P. Analytical solutions to shock and expansion waves for non-ideal equations of state. Physics of Fluids, 32(8), 086105 (2020) |
| [21] | WANG, J. C. H. and HICKEY, J. P. A class of structurally complete approximate Riemann solvers for trans- and supercritical flows with large gradients. Journal of Computational Physics, 468, 111521 (2022) |
| [22] | WANG, J. C. H. Riemann Solvers with Non-Ideal Thermodynamics: Exact, Approximate, and Machine Learning Solutions, Ph. D. dissertation, University of Waterloo (2022) |
| [23] | KOUREMENOS, D. A. The normal shock waves of real gases and the generalized isentropic exponents. Forschung Im Ingenieurwesen, 52(1), 23–31 (1986) |
| [24] | SHAO, Z. Q. The Riemann problem for a traffic flow model. Physics of Fluids, 35(3), 036104 (2023) |
| [25] | SHAO, Z. Q. Almost global existence of classical discontinuous solutions to genuinely nonlinear hyperbolic systems of conservation laws with small BV initial data. Journal of Differential Equations, 254(7), 2803–2833 (2013) |
| [26] | SHAO, Z. Q. Global weakly discontinuous solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Mathematical Models and Methods in Applied Sciences, 19(7), 1099–1138 (2009) |
| [27] | SEDOV, L. I. Mechanics of a Continuous Medium, Nauka, Moscow (1973) |
| [28] | PENG, D. and ROBINSON, D. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64 (1976) |
| [29] | REDLICH, O. and KWONG, J. On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. Chemical Reviews, 44(1), 233–237 (1949) |
| [30] | LIOU, M. S., VAN LEER, B., and SHUEN, J. S. Splitting of inviscid fluxes for real gases. Journal of Computational Physics, 87(1), 1–24 (1990) |
| [31] | LANDAU, L. D. and LIFSHITZ, E. M. Fluid Mechanics, Pergamon Press, Oxford, 310–346 (1959) |
| [32] | GODUNOV, S. K. A finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematicheskii Sbornik, 47(3), 271–306 (1959) |
| [33] | NIST. NIST Chemistry WebBook (2023) http://webbook.nist.gov |
| [34] | MOHAMED, K. and PARASCHIVOIU, M. Real gas numerical simulation of hydrogen flows. 2nd International Energy Conversion Engineering Conference, Providence, Rhode Island, 16–19 (2004) |
| [35] | TERASHIMA, H. and KOSHI, M. Approach for simulating gas-liquid-like flows under supercritical pressures using a high-order central differencing scheme. Journal of Computational Physics, 231(20), 6907–6923 (2012) |
| [36] | LACAZE, G., SCHMITT, T., RUIZ, A., and OEFELEIN, J. C. Comparison of energy-, pressure- and enthalpy-based approaches for modeling supercritical flows. Computers & Fluids, 181, 35–56 (2019) |
| [37] | ABGRALL, R. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. Journal of Computational Physics, 125(1), 150–160 (1996) |
| [38] | XU, B. N., JIN, H. H., GUO, Y., and FAN, J. R. An adaptive primitive-conservative scheme for high speed transcritical flow with an arbitrary equation of state. arXiv Preprint, arXiv: 2206.11639 (2022) |
| [39] | MA, P. C., LV, Y., and IHME, M. An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. Journal of Computational Physics, 340, 330–357 (2017) |
| [1] | RIEMANN, B. Ueber die fortpflanzung ebener luftwellen von endlicher schwingungsweite. Abhandlungen der Köeniglichen Gesellschaft der Wissenschaften zu Göettingen, 8, 43–65 (1860) |
| [2] | TORO, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Heidelberg (2009) |
| [3] | HICKEY, J. P. and IHME, M. Supercritical mixing and combustion in rocket propulsion. Center for Turbulence Research Annual Research Briefs 2023, Stanford University, 21–36 (2013) |
| [4] | POPP, M., HULKA, J., YANG, V., and HABIBALLAH, M. Liquid rocket thrust chambers. Aspects of Modeling, Analysis, and Design, 13–109 (2004) |
| [5] | SUN, M. B., ZHONG, Z., LIANG, J. H., and WANG, Z. G. Experimental investigation of supersonic model combustor with distributed injection of supercritical kerosene. Journal of Propulsion and Power, 30(6), 1537–1542 (2014) |
| [6] | LUO, S., XU, D., SONG, J., and LIU, J. A review of regenerative cooling technologies for scramjets. Applied Thermal Engineering, 190, 116754 (2021) |
| [7] | SHEARER, M. Nonuniqueness of admissible solutions of Riemann initial value problems for a system of conservation laws of mixed type. Archive for Rational Mechanics and Analysis, 93, 45–59 (1986) |
| [8] | MENIKOFF, R. and PLOHR, B. J. The Riemann problem for fluid flow of real materials. Reviews of Modern Physics, 61, 75–130 (1989) |
| [9] | TRUSKINOVSKII, L. M. Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium. Journal of Applied Mathematics and Mechanics, 51(6), 777–784 (1987) |
| [10] | LIU, T. P. The entropy condition and the admissibility of shocks. Journal of Mathematical Analysis and Applications, 53(1), 78–88 (1976) |
| [11] | LANDAU, L. D. and LIFSHITZ, E. M. Statistical Physics, Pergamon Press, Oxford (1980) |
| [12] | COLELLA, P. and GLAZ, H. M. Efficient solution algorithms for the Riemann problem for real gases. Journal of Computational Physics, 59(2), 264–289 (1985) |
| [13] | GLAISTER, P. An approximate linearised Riemann solver for the Euler equations for real gases. Journal of Computational Physics, 74(2), 382–408 (1988) |
| [14] | SAUREL, R., LARINI, M., and LORAUD, J. C. Exact and approximate Riemann solvers for real gases. Journal of Computational Physics, 112(1), 126–137 (1994) |
| [15] | IVINGS, M. J., CAUSON, D. M., and TORO, E. F. On Riemann solvers for compressible liquids. International Journal for Numerical Methods in Fluids, 28(3), 395–418 (1998) |
| [16] | QUARTAPELLE, L., CASTELLETTI, L., GUARDONE, A., and QUARANTA, G. Solution of the Riemann problem of classical gasdynamics. Journal of Computational Physics, 190(1), 118–140 (2003) |
| [17] | SEKHAR, T. R. and SHARMA, V. D. Solution to the Riemann problem in a one-dimensional magnetogasdynamic flow. International Journal of Computer Mathematics, 89(2), 200–216 (2012) |
| [1] | Lele ZHANG, Zheng ZHAO, Xiaofan HU, Guoquan NIE, Jinxi LIU. Exact multi-field coupling modeling and analysis of piezoelectric semiconductor plates [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1331-1346. |
| [2] | Pengxu GUO, Yueting ZHOU. Exact analysis of the orientation-adjusted adhesive full stick contact of layered structures with the asymmetric bipolar coordinates [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 883-898. |
| [3] | Yu CHEN, Junhong GUO. Effective property of piezoelectric composites containing coated nano-elliptical fibers with interfacial debonding [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(11): 1701-1716. |
| [4] | Tuoya SUN, Junhong GUO, E. PAN. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1077-1094. |
| [5] | Zhina ZHAO, Junhong GUO. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 625-640. |
| [6] | Pei ZHANG, Hai QING. Two-phase nonlocal integral models with a bi-Helmholtz averaging kernel for nanorods [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1379-1396. |
| [7] | Yulong YANG, Weifeng YUAN, Jirui HOU, Zhenjiang YOU, Jun LI, Yang LIU. Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 491-506. |
| [8] | H. SADAF. Bio-fluid flow analysis based on heat transfer and variable viscosity [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 1029-1040. |
| [9] | Tuoya SUN, Junhong GUO, Xiaoyan ZHANG. Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(3): 335-352. |
| [10] | Lihua LIU, Chaolu TEMUER. Symmetry analysis of modified 2D Burgers vortex equation for unsteady case [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 453-468. |
| [11] | A. M. SIDDIQUI, T. HAROON, A. SHAHZAD. Hydrodynamics of viscous fluid through porous slit with linear absorption [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(3): 361-378. |
| [12] | Ping LIU. A class of exact solutions for N-dimensional incompressible magnetohydrodynamic equations [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 209-214. |
| [13] | B. BIRA, T. R. SEKHAR. Exact solutions to drift-flux multiphase flow models through Lie group symmetry analysis [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1105-1112. |
| [14] | M. KHAN;R. MALIK;A. ANJUM. Exact solutions of MHD second Stokes flow of generalized Burgers fluid [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 211-224. |
| [15] | LIU Xiao-Jing;WANG Ji-Zeng;WANG Xiao-Min;ZHOU You-He. Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(1): 49-62. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

Email Alert
RSS