[1] Saidur, R., Leong, K. Y., and Mohammad, H. A. A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15, 1646-1668 (2011)
[2] Wang, X. Q. and Mujumdar, A. S. Heat transfer characteristics of nanofluids: a review. Interna-tional Journal of Thermal Sciences, 46, 1-19 (2007)
[3] Allen, M. P. and Tildesley, D. J. Computer Simulations of Liquids, Clarendon, Oxford (1987)
[4] Sarkar, S. and Selvam, R. P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. Journal of Applied Physics, 102, 074302 (2007)
[5] Sankar, N., Mathew, N., and Sobhan, C. B. Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions. International Communications in Heat and Mass Transfer, 35, 867-872 (2008)
[6] Li, L., Zhang, Y., Ma, H., and Yang, M. Molecular dynamics simulation of effect of liquid lay-ering around the nanoparticle on the enhanced thermal conductivity of nanofluids. Journal of Nanoparticle Research, 12, 811-821 (2010)
[7] Xue, L., Keblinski, P., Phillpot, S. R., Choi, S. U., and Eastman, J. A. Effect of liquid layering at the liquid-solid interface on thermal transport. International Journal of Heat and Mass Transfer, 47, 4277-4284 (2004)
[8] Kang, H., Zhang, Y., Yang, M., and Li, L. Nonequilibrium molecular dynamics simulation of coupling between nanoprticles and base-fluid in a nanofluid. Physics Letters A, 376, 521-524 (2012)
[9] Mohebbi, A. Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. Journal of Molecular Liquids, 175, 51-58 (2012)
[10] Kondarajau, S., Jin, E. K., and Lee, J. S. Direct numerical simulation of thermal conductivity of nanofluids: the effect of temperature two-way coupling and coagulation of particles. International Journal of Heat and Mass Transfer, 53, 862-869 (2010)
[11] Vladkov, M. and Barrat, J. L. Modeling thermal conductivity and collective effects in a simple nanofluid. Journal of Computational and Theoretical Nanoscience, 5, 187-193 (2008)
[12] Sofos, F., Karakasidis, T. E., and Liakopoulos, A. Non-equilibrium molecular dynamics investi-gation of parameters affecting planar nanochannel flows. Contemporary Engineering Sciences, 2, 283-298 (2009)
[13] Sofos, F., Karakasidis, T. E., and Liakopoulos, A. Transport properties of liquid argon in kryp-ton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. International Journal of Heat and Mass Transfer, 52, 735-743 (2009)
[14] Sofos, F., Karakasidis, T. E., and Liakopoulos, A. Parameters affecting slip length at the nanoscale. Journal of Computational and Theoretical Nanoscience, 10, 648-650 (2013)
[15] Priezjev, N. V. Rate-dependent slip boundary conditions for simple fluids. Physical Review E, 75, 051605 (2007)
[16] Li, L., Zhang, Y., Ma, H., and Yang, M. An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation. Physics Letters A, 372, 4541-4544 (2008)
[17] Evans, W., Fish, J., and Keblinski, P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Applied Physics Letters, 88, 093116 (2006)
[18] Merabia, S., Shenogin, S., Joly, L., Keblinski, P., and Barrat, J. L. Heat transfer from nanoparti-cles: a corresponding state analysis. Applied Physical Sciences, 106, 15113-15118 (2009)
[19] Lv, J., Cui, W., Bai, M., and Li, X. Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition. Microfluid Nanofluid, 10, 475-480 (2011)
[20] Lv, J., Cui, W., Bai, M., and Li, X. The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system. Nanoscale Research Letters, 6, 200 (2011)
[21] Cui, W., Bai, M., Lv, J., and Li, X. On the microscopic flow characteristics of nanofluids by molecular dynamics simulation on Couette flow. The Open Fuels and Energy Science Journal, 5, 21-27 (2012)
[22] Cui, W., Bai, M., Lv, J., Zhang, L., Li, G., and Xu, M. On the flow characteristics of nanofluids by experimental approach and molecular dynamics simulation. Experimental Thermal and Fluid Science, 39, 148-157 (2012)
[23] Ziarani, A. S. and Mohamad, A. A. A molecular dynamics study of perturbed Poiseuille flow in a nanochannel. Microfluid Nanofluid, 2, 12-20 (2005)
[24] Li, Y. X., Xu, J. L., and Li, D. Q. Molecular dynamics simulation of nanoscale liquid flows. Microfluid Nanofluid, 9, 1011-1013 (2010)
[25] Soong, C. Y., Yen, T. H., and Tzeng, P. Y. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions. Physical Review E, 76, 036303 (2007)
[26] Aminfar, H., Jafarizadeh, M. A., and Razmara, N. Nanoparticles aggregation in nanofluid flow through nanochannels: insights from molecular dynamic study. International Journal of Modern Physics C, 25, 1450066 (2014)
[27] Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computa-tional Physics, 117, 1-19 (1995) |