[1] Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718-720(2001)
[2] Keblinski, P., Prasher, R., and Eapen, J. Thermal conductance of nanofluids:is the controversy over? Journal of Nanoparticle Research, 10, 1089-1097(2008)
[3] Chen, H., Ding, Y., and Tan, C. Rheological behaviour of nanofluids. New Journal of Physics, 9, 367(1-24) (2007)
[4] Lee, J. H., Lee, S. H., Choi, C., Jang, S., and Choi, S. A review of thermal conductivity data, mechanisms and models for nanofluids. International Journal of Micro-Nano Scale Transport, 1, 269-322(2010)
[5] Wong, K. V. and de Leon, O. Applications of nanofluids:current and future. Advances in Mechanical Engineering, 2, 519659(2010)
[6] Tombcz, E., Bica, D., Hajdu, A., Ills, E., Majzik, A., and Vks, L. Surfactant double layer stabilized magnetic nanofluids for biomedical application. Journal of Physics:Condensed Matter, 20, 204103(2008)
[7] Buongiorno, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240-250(2006)
[8] Crane, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21, 645-647(1970)
[9] Miklavcic, M. and Wang, C. Y. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics, 64, 283-290(2006)
[10] Wang, C. Y. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43, 377-382(2008)
[11] Fang, T. and Zhang, J. Closed-form exact solutions of MHD viscous flow over a shrinking sheet. Communications in Nonlinear Science and Numerical Simulation, 14, 2853-2857(2009)
[12] Khan, W. A. and Pop, I. Boundary layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477-2483(2010)
[13] Rana, P. and Bhargava, R. Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet:a numerical study. Communications in Nonlinear Science and Numerical Simulation, 17, 212-226(2012)
[14] Kuznetsov, A. V. and Nield, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49, 243-247(2010)
[15] Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D. D., Rana, P., and Soleimani, S. Magnetohydrodynamic free convection of Al2O3-water nanofluid considering thermophoresis and Brownian motion effects. Computers and Fluids, 94, 147-160(2014)
[16] Rana, P., Bhargava, R., and Bég, O. A. Finite element simulation of unsteady magnetohydrodynamic transport phenomena on a stretching sheet in a rotating nanofluid. Proceedings of the Institution of Mechanical Engineers, Part N:Journal of Nanoengineering and Nanosystems, 227, 77-99(2013)
[17] Dhanai, R., Rana, P., and Kumar, L. Multiple solutions of MHD boundary layer flow and heat transfer behavior of nanofluids induced by a power-law stretching/shrinking permeable sheet with viscous dissipation. Powder Technology, 273, 62-70(2015)
[18] Bachok, N., Ishak, A., and Pop, I. Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet. International Journal of Heat and Mass Transfer, 55, 2102-2109(2012)
[19] Malvandi, A., Hedayati, F., and Ganji, D. D. Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technology, 253, 377-384(2014)
[20] Freidoonimehr, N., Rashidi, M. M., and Mahmud, S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nanofluid. International Journal of Thermal Sciences, 87, 136-145(2015)
[21] Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe:analytical solutions. Applied Mathematical Modelling, 37, 1451-1467(2013)
[22] Uddin, M. J., Yusoff, N. M., Bg, O. A., and Ismail, A. I. M. Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation. Physica Scripta, 87, 025401(2013)
[23] Dhanai, R., Rana, P., and Kumar, L. Critical values in slip flow and heat transfer analysis of nonNewtonian nanofluid utilizing heat source/sink and variable magnetic field:multiple solutions. Journal of Taiwan Institute of Chemical Engineers, 58, 155-164(2016)
[24] Cao, L., Si, X., and Zheng, L. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles:Lie group analysis. Applied Mathematics and Mechanics (English Edition), 37(4), 433-442(2016) DOI 10.1007/s10483-016-2052-9
[25] Merkin, J. H. On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering Mathematics, 20, 171-179(1986)
[26] Weidman, P. D., Kubitschek, D. G., and Davis, A. M. J. The effect of transpiration on selfsimilar boundary layer flow over moving surfaces. International Journal of Engineering Science, 44, 730-737(2006)
[27] Harris, S. D., Ingham, D. B., and Pop, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium:Brinkman model with slip. Transport in Porous Media, 77, 267-285(2009)
[28] Bachok, N., Ishak, A., and Pop, I. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Research Letters, 6, 1-10(2011)
[29] Bachok, N., Ishak, A., and Pop, I. Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. International Journal of Heat and Mass Transfer, 55, 8122-8128(2012)
[30] Zaimi, K., Ishak, A., and Pop, I. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model. PLoS One, 9, e111743(2014)
[31] Zaimi, K., Ishak, A., and Pop, I. Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid. Scientific Reports, 4, 4404(1-8) (2014)
[32] Zaimi, K., Ishak, A., and Pop, I. Stagnation-point flow toward a stretching/shrinking sheet in a nanofluid containing both nanoparticles and gyrotactic microorganisms. Journal of Heat Transfer, 136, 041705(2014)
[33] Eringen A. C. Simple microfluids. International Journal of Engineering Science, 2, 205-217(1964)
[34] Eringen, A. C. Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications, 38, 480-496(1972)
[35] Gorla, R. S. R. and Kumari, M. Mixed convection flow of a non-Newtonian nanofluid over a non-linearly stretching sheet. Journal of Nanofluids, 1, 186-195(2012)
[36] Hussain, S. T., Nadeem, S., and Haq, R. U. Model-based analysis of micropolar nanofluid flow over a stretching surface. The European Physical Journal Plus, 129, 1-10(2014)
[37] Bourantas, G. C. and Loukopoulos, V. C. Modeling the natural convective flow of micropolar nanofluids. International Journal of Heat and Mass Transfer, 68, 35-41(2014)
[38] Nadeem, S., Rehman, A., Vajravelu, K., Lee, J., and Lee, C. Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder. Mathematical Problems in Engineering, 2012, 378259(2012)
[39] Rehman, A. and Nadeem, S. Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder. Chinese Physics Letters, 29, 124701(2012)
[40] Yacob, N. A. and Ishak, A. Micropolar fluid flow over a shrinking sheet. Meccanica, 47, 293-299(2012)
[41] Kuznetsov, A. V. and Nield, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate:a revised model. International Journal of Thermal Sciences, 77, 126-129(2014)
[42] Khan, W. A., Uddin, M. J., and Ismail, A. I. M. Effect of multiple slips and dissipation on boundary layer flow of nanofluid over a porous flat plate in porous media. Journal of Porous Media, 18, 1-14(2015)
[43] Uddin, M. J., Bg, O. A., and Ismail, A. I. M. Radiative convective nanofluid flow past a stretching/shrinking sheet with slip effects. Journal of Thermophysics and Heat Transfer, 29, 513-523(2015)
[44] Uddin, M. J., Kabir, M. N., and Alginahi, Y. M., Lie group analysis and numerical solution of magnetohydrodynamic free convective slip flow of micropolar fluid over a moving plate with heat transfer. Computers and Mathematics with Applications, 70, 846-856(2015)
[45] Karniadakis, G. E. M., Beskok, A., and Gad-el-Hak, M. Micro flows:fundamentals and simulation. Applied Mechanics Reviews, 55, B76(2002)
[46] Ahmadi, G. Self-similar solution of incompressible micropolar boundary layer flow over a semiinfinite plate. International Journal of Engineering Science, 14, 639-646(1976)
[47] Bluman, G. and Anco, S. Symmetry and Integration Methods for Differential Equations, Vol. 154, Springer Science & Business Media, New York (2008)
[48] Dhanai, R., Rana, P., and Kumar, L. Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition:critical points. The European Physical Journal Plus, 131, 142(1-14) (2016)
[49] Dhanai, R., Rana, P., and Kumar, L. MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects:Buongiorno's model. Powder Technology, 288, 140-150(2016) |