[1] HAYAT, T., NAZAR, H., IMTIAZ, M., and ALSAEDI, A. Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Applied Mathematics and Mechanics (English Edition), 38(12), 1663-1678(2017) https://doi.org/10.1007/s10483-017-2289-8
[2] JONES, B. J., VERGNE, M. J., BUNK, D. M., LOCASCIO, L. E., and HAYES, M. A. Cleavage of Peptides and Proteins using light-generated radicals from titanium dioxide. Analytical Chemistry 79, 1327-1332(2007)
[3] KONSTANTINOU, I. K. and ALBANIS, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:Kinetic and mechanistic investigations. Applied Catalysis B:Environmental, 49, 1-14(2004)
[4] LINDSTROM, H., SÖDERGREN, S., SÖLBRAND, A., RENSMO, H., HJELM, J., HAGFELDT, A., and LINDQUIST, S. Li+ ion insertion in TiO2(anatase). 2. voltammetry on nanoporous films. Journal of Physical Chemistry B, 101, 7717-7722(1997)
[5] DU, X., WANG, Q., FENG, T., CHEN, X., LI, L., LI, L., MENG, X., XIONG, L., and SUN, X. One-step preparation of nanoarchitectured TiO2 on porous Al as integrated anode for highperformance Lithium-ion batteries. Scientific Reports, 6, 20138(2016)
[6] SU, D., DOU, S., and WANG, G. Anatase TiO2:better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chemistry of Materials, 27, 6022-6029(2015)
[7] YUAN, S. A., CHEN, W. H., and HU, S. S. Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine. Materials Science and Engineering:C, 25, 479-485(2005)
[8] BRAUN, J. H., BAIDINS, A., and MARGANSKI, R. E. TiO2 pigment technology:a review. Progress in Organic Coatings, 20, 105-138(1992)
[9] ZALLEN, R. and MORET, M. P. The optical absorption edge of brookite TiO2. Solid State Communications, 137, 154-157(2006)
[10] CHEN, X. and MAO, S. S. Titanium dioxide nanomaterials:synthesis, properties, modifications and applications. Chemical Reviews, 107, 2891-2959(2007)
[11] MAHENDRAN, M., LEE, G. C., SHARMA, K. V., and SHAHRANI, A. Performance evaluation of evacuated tube solar collector using water-based titanium oxide (TiO2) nanofluid. Journal of Mechanical Engineering Science, 3, 301-310(2012)
[12] SAID, Z., SABIHA, M. A., SAIDUR, R., HEPBASLI, A., RAHIM, N. A., MEKHILEF, S., and WARD, T. A. Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. Journal of Cleaner Production, 92, 343-353(2015)
[13] DINARVAND, S. and POP, I. Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme. Advanced Powder Technology, 28, 900-909(2017)
[14] FEDELE, L., COLLA, L., and BOBBO, S. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. International Journal of Refrigeration, 35, 1359-1366(2012)
[15] KAO, M. and LIN, C. Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron. Journal of Alloys and Compounds, 483, 456-459(2009)
[16] SAJADI, A. R. and KAZEMI, M. H. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. International Communications in Heat and Mass Transfer, 38, 1474-1478(2011)
[17] RADIOM, M., YANG, C., and CHAN, W. K. Dynamic contact angle of water-based titanium oxide nanofluid. Nanoscale Research Letters, 8, 1-9(2013)
[18] HAMID, A. K., AZMI, W. H., MAMAT, R., USRI, N. A., and NAJAFI, G. Effect of temperature on heat transfer coefficient of titanium dioxide in Ethylene Glycol-based nanofluid. Journal of Mechanical Engineering Science, 8, 1367-1375(2015)
[19] MATTHIAS, H. and BUSCHMANN, U. F. Improvement of thermosyphon performance by employing nanofluid. International Journal of Refrigeration, 40, 416-428(2014)
[20] NAPHON, P., ASSADAMONGKOL, P., and BORIRAK, T. Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. International Communications in Heat and Mass Transfer, 35, 1316-1319(2008)
[21] SHEIKHOLESLAMI, M. and ROKNI, H. B. Simulation of nanofluid heat transfer in presence of magnetic field:A review. International Journal of Heat and Mass Transfer, 115, 1203-1233(2017)
[22] SHEIKHOLESLAMI, M. and SHEHZAD, S. A. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. International Journal of Heat and Mass Transfer, 120, 1200-1212(2018)
[23] SHEIKHOLESLAMI, M. and SEYEDNEZHAD, M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. International Journal of Heat and Mass Transfer, 120, 772-781(2018)
[24] SHEIKHOLESLAMI, M. and ROKNI, H. B. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. International Journal of Heat and Mass Transfer, 118, 823-831(2018)
[25] SHEIKHOLESLAMI, M. and SHEHZAD, S. A. Numerical analysis of Fe3O4-H2O nanofluid flow in permeable media under the effect of external magnetic source. International Journal of Heat and Mass Transfer, 118, 182-192(2018)
[26] SHEIKHOLESLAMI, M. and SADOUGHI, M. K. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer, 116, 909-919(2018)
[27] SHEIKHOLESLAMI, M. and ROKNI, H. B. Nanofluid two phase model analysis in existence of induced magnetic field. International Journal of Heat and Mass Transfer, 107, 288-299(2017)
[28] SHEIKHOLESLAMI, M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. Journal of Molecular Liquids, 249, 1212-1221(2018)
[29] SHEIKHOLESLAMI, M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. Journal of Molecular Liquids, 249, 921-929(2018)
[30] SHEIKHOLESLAMI, M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. Journal of Molecular Liquids, 249, 739-746(2018)
[31] SHEIKHOLESLAMI, M., M. SHAMLOOEI, M., and MORADI, R. Fe3O4-ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. Journal of Molecular Liquids, 249, 429-437(2018)
[32] SHEIKHOLESLAMI, M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. Journal of Molecular Liquids, 234, 364-374(2017)
[33] SHEIKHOLESLAMI, M. and ROKNI, H. B. Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. Journal of Molecular Liquids, 232, 390-395(2017)
[34] SHEIKHOLESLAMI, M. Influence of Lorentz forces on nanofluid flow in a porous cavity by means of non-Darcy model. Journal of Molecular Liquids, 225, 903-912(2017)
[35] SHEIKHOLESLAMI, M. Numerical investigation of MHD nanofluid free convective heat transfer in a porous tilted enclosure. Engineering Computations, 34(6), 1939-1955(2017)
[36] SHEIKHOLESLAMI, M. and ROKNI, H. B. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Computer Methods in Applied Mechanics and Engineering, 317, 419-430(2017)
[37] SHEIKHOLESLAMI, M. and ROKNI, H. B. Free convection of CuO-H2O nanofluid in a curved porous enclosure using mesoscopic approach. International Journal of Hydrogen Energy, 42, 14942-14949(2017)
[38] SHEIKHOLESLAMI, M. and ROKNI, H. B. Magnetohydrodynamic CuO-water nanofluid in a porous complex-shaped enclosure. Journal of Thermal Science and Engineering Applications, 9, 41007(2017)
[39] OTHMAN, M. A., AMAT, N. F., AHMAD, B. H., and RAJAN, J. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method. Journal of Physics:Conference Series, 495, 012027(2014)
[40] JOSE, R., THAVASI, V., and RAMAKRISHNA, S. Metal oxides for dye-sensitized solar cells. Journal of the American Ceramic Society, 92, 289-301(2009)
[41] PHAM, T. T. T., MATHEWS, N., LAM, Y. M., and MHAISALKAR, S. Enhanced efficiency of dye-Sensitized solar cells with mesoporous-acroporous TiO2 photoanode obtained using ZnO template. Journal of Electronic Materials, 46, 3801-3807(2017)
[42] VIJAYAKUMAR, P., PANDIAN, M. S., and RAMASAMY, P. Tungsten carbide nanorods with titanium dioxide composite counter electrode:effect of NMP to enhanced efficiency in dye sensitized solar cell (DSSC). AIP Conference Proceedings, 1832, 050002(2017) |