[1] KÜCHEMANN, D. Report on the I. U. T. A. M. symposium on concentrated vortex motions in fluids. Journal of Fluid Mechanics, 21, 1-20(1965) [2] SHE, Z. S., JACKSON, E., and ORSZAG, S. A. Intermittent vortex structures in homogeneous isotropic. nature, 344, 226-228(1990) [3] ROTUNNO, R. The fluid dynamics of tornadoes. Annual Review of Fluid Mechanics, 45, 59-84(2013) [4] LIN, C. C. and LAU, Y. Y. Density wave theory of spiral structure of galaxies. Studies in Applied Mathematics, 60, 97-163(1979) [5] PAULEY, R. L. and SNOW, J. T. On the kinematics and dynamics of the 18 July 1986 Minneapolis tornado. Monthly Weather Review, 116, 2731-2736(1988) [6] WU, J. Z., MA, H. Y., and ZHOU, M. D. Vorticity and Vortex Dynamics, Springer-Verlag, Berlin Heidelberg/New York (2006) [7] PERRY, A. E. and STEINER, T. R. Large-scale vortex structures in turbulent wakes behind bluff bodies:part 1, vortex formation processes. Journal of Fluid Mechanics, 174, 233-270(1987) [8] STEINER, T. R. and PERRY, A. E. Large-scale vortex structures in turbulent wakes behind bluff bodies:part 2, far-wake structures. Journal of Fluid Mechanics, 174, 271-298(1987) [9] PERRY, A. E. and CHONG, M. S. A description of eddying motions and flow patterns using critical-point concepts. Annual Review of Fluid Mechanics, 19, 125-155(1987) [10] ZHANG, S., ZHANG, H., and SHU, C. W. Topological structure of shock induced vortex breakdown. Journal of Fluid Mechanics, 639, 343-372(2009) [11] DELERY, J. M. Aspects of vortex breakdown. Progress Aerospace Science, 30, 1-59(1984) [12] MENEVEAU, C. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annual Review of Fluid Mechanics, 43, 219-245(2011) [13] CARDESA, J. I., MISTRY, D., GAN, L., and DAWSON, J. R. Invariants of the reduced velocity gradient tensor in turbulent flows. Journal of Fluid Mechanics, 716, 597-615(2013) [14] CHONG, M. S., PERRY, A. E., and CANTWELL, B. J. A general classification of threedimensional flow fields. Physics of Fluids, 4, 765-777(1990) [15] ZHOU, J., ADRIAN, R. J., BALACHANDAR, S., and KENDALL, T. M. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387, 353-396(1999) [16] CRANK, J., MARTIN, H. G., and MELLUISH D. M. Nonlinear Ordinary Differential Equations, Oxford University Press, Oxford (1977) [17] ZHANG, H. X. Structural Analysis of Separated Flows and Vortex Motion (in Chinese), National Defence Industry Press, Beijing (2005) [18] WANG, K. C., ZHOU, H. C., HU, C. H., and HARRINGTON, S. Three-dimensional separated flow structure over prolate spheroids. Proceedings of the Royal Society of London A, 421, 73-90(1990) [19] SULLIVAN, R. D. A two-cell solution of the Navier-Stokes equations. Journal of Aerospace Science, 26, 767(1959) [20] SURANA, A., GRUNBERG, O., and HALLER, G. Exact theory of three dimensional separation:part 1, steady separation. Journal of Fluid Mechanics, 564, 57-103(2006) [21] HAGEN, J. P. and KUROSAKA, M. Corewise crossflow transport in hairpin vortices-the "tornado effect". Physics of Fluids A, 5, 3167-3174(1993) [22] CHONG, M. S., SORIA, J., PERRY, A. E., CHACIN, J., CANTWELL, B. J., and NA, Y. Turbulence structures of wall-bounded shear flows found using DNS data. Journal of Fluid Mechanics, 357, 225-247(1998) [23] ZHANG, H. and ZHUANG, F. NND schemes and their applications to numerical simulation of two and three dimensional flows. Advances in Applied Mechanics, 29, 263-293(1992) [24] JIANG, G. S. and SHU, C. W. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126, 202-228(1996) [25] ZHANG, S., ZHANG, H., and ZHU, G. Numerical simulation of vortex structure in the leeside of supersonic delta wing (in Chinese). Acta Aerodynamica Sinica, 14, 430-435(1996) [26] ZHANG, S., ZHANG, H., and ZHU, G. Numerical simulation of vortical flows over delta wings and analysis of vortex motion (in Chinese). Acta Aerodynamica Sinica, 15, 121-129(1997) [27] ERLEBACHER, G., HUSSAINI, M. Y., and SHU, C. W. Interaction of a shock with a longitudinal vortex. Journal of Fluid Mechanics, 337, 129-153(1997) [28] LI, H. and ZHANG, S. Direct numerical simulation of decaying compressible isotropic turbulence. ACTA Mechanica Sinica, 44, 673-686(2012) [29] KALKHORAN, I. M. and SMART, M. K. Aspects of shock wave-induced vortex breakdown. Progress in Aerospace Sciences, 36, 63-95(2000) |