Applied Mathematics and Mechanics (English Edition) ›› 2019, Vol. 40 ›› Issue (9): 1285-1300.doi: https://doi.org/10.1007/s10483-019-2516-9

• 论文 • 上一篇    下一篇

Heat transfer and entropy generation analysis of non-Newtonian fluid flow through vertical microchannel with convective boundary condition

M. MADHU1, N. S. SHASHIKUMAR1, B. MAHANTHESH2, B. J. GIREESHA1, N. KISHAN3   

  1. 1. Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta 577451, India;
    2. Department of Mathematics, Christ Deemed to be University, Bangalore 560029, India;
    3. Department of Mathematics, Osmania University, Telangana 500007, India
  • 收稿日期:2019-01-14 修回日期:2019-04-05 出版日期:2019-09-01 发布日期:2019-09-10
  • 通讯作者: B. J. GIREESHA E-mail:bjgireesu@rediffmail.com

Heat transfer and entropy generation analysis of non-Newtonian fluid flow through vertical microchannel with convective boundary condition

M. MADHU1, N. S. SHASHIKUMAR1, B. MAHANTHESH2, B. J. GIREESHA1, N. KISHAN3   

  1. 1. Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta 577451, India;
    2. Department of Mathematics, Christ Deemed to be University, Bangalore 560029, India;
    3. Department of Mathematics, Osmania University, Telangana 500007, India
  • Received:2019-01-14 Revised:2019-04-05 Online:2019-09-01 Published:2019-09-10
  • Contact: B. J. GIREESHA E-mail:bjgireesu@rediffmail.com

摘要: The entropy generation and heat transfer characteristics of magnetohydrodynamic (MHD) third-grade fluid flow through a vertical porous microchannel with a convective boundary condition are analyzed. Entropy generation due to flow of MHD non-Newtonian third-grade fluid within a microchannel and temperature-dependent viscosity is studied using the entropy generation rate and Vogel's model. The equations describing flow and heat transport along with boundary conditions are first made dimensionless using proper non-dimensional transformations and then solved numerically via the finite element method (FEM). An appropriate comparison is made with the previously published results in the literature as a limiting case of the considered problem. The comparison confirms excellent agreement. The effects of the Grashof number, the Hartmann number, the Biot number, the exponential space-and thermal-dependent heat source (ESHS/THS) parameters, and the viscous dissipation parameter on the temperature and velocity are studied and presented graphically. The entropy generation and the Bejan number are also calculated. From the comprehensive parametric study, it is recognized that the production of entropy can be improved with convective heating and viscous dissipation aspects. It is also found that the ESHS aspect dominates the THS aspect.

关键词: microchannel, entropy generation, Bejan number, third-grade fluid, magnetic field

Abstract: The entropy generation and heat transfer characteristics of magnetohydrodynamic (MHD) third-grade fluid flow through a vertical porous microchannel with a convective boundary condition are analyzed. Entropy generation due to flow of MHD non-Newtonian third-grade fluid within a microchannel and temperature-dependent viscosity is studied using the entropy generation rate and Vogel's model. The equations describing flow and heat transport along with boundary conditions are first made dimensionless using proper non-dimensional transformations and then solved numerically via the finite element method (FEM). An appropriate comparison is made with the previously published results in the literature as a limiting case of the considered problem. The comparison confirms excellent agreement. The effects of the Grashof number, the Hartmann number, the Biot number, the exponential space-and thermal-dependent heat source (ESHS/THS) parameters, and the viscous dissipation parameter on the temperature and velocity are studied and presented graphically. The entropy generation and the Bejan number are also calculated. From the comprehensive parametric study, it is recognized that the production of entropy can be improved with convective heating and viscous dissipation aspects. It is also found that the ESHS aspect dominates the THS aspect.

Key words: microchannel, entropy generation, Bejan number, third-grade fluid, magnetic field

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals