Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (2): 253-268.doi: https://doi.org/10.1007/s10483-025-3221-8
收稿日期:
2024-09-18
修回日期:
2024-12-30
出版日期:
2025-02-03
发布日期:
2025-02-02
Kai LI, Chongfeng ZHAO, Yunlong QIU, Yuntong DAI†()
Received:
2024-09-18
Revised:
2024-12-30
Online:
2025-02-03
Published:
2025-02-02
Contact:
Yuntong DAI
E-mail:daiytmechanics@ahjzu.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 253-268.
Kai LI, Chongfeng ZHAO, Yunlong QIU, Yuntong DAI. Light-powered self-rolling of a liquid crystal elastomer-based dicycle[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 253-268.
"
Parameter | Definition | Value | Unit |
---|---|---|---|
I1 | Light intensity | 0–100 | kW/m2 |
C | Contraction coefficient | 0–0.5 | |
T | Thermal relaxation time | 0.01–0.05 | s |
η1 | Light absorption constant | 0.000 2 | m/(s2·W) |
m | Overall mass of the dicycle | 0.004–0.04 | kg |
mL | LCE rod mass | 0.01–0.08 | kg |
zI | Light penetration depth | 0–0.15 | m |
L0 | Initial length of the LCE | 0–0.2 | m |
R0 | Radius of the LCE rod | 0–0.02 | m |
RC | Wheel radius | 0–0.05 | m |
"
Name | Ingredient | Function |
---|---|---|
Liquid crystal monomer | 1, 4-bis-[4-(3-acryloyloxypropyloxy) benzoyloxy]-2-methylbenzene (RM257, 95%) | Liquid crystal phase structure constituting LCE |
Crosslinking agent | Pentaerythritol tetrakis (3-mercaptopropionate) (PETMP, 95%) | Introduction of cross-linking points into liquid crystal molecules to enhance LCE stability |
Spacer | 2, 2-(ethyleneoxy) diethanethiol (EDDET, 95%) | Adjustment of flexibility and deformation properties of LCE |
Photo-initiator | 2-hydroxy-2-methylpropiophenone (I2959, 98%) | Control of photoinitiation reaction on deformation or reaction properties of LCE |
Catalyst | Dipropylamine (DPA, 98%) | Catalyst for photo-initiators to facilitate reaction progress |
Photothermal agent | Multi-walled carbon nanotubes (CNTs, 98%) | Improvement of photothermal conversion, material strength, and durability |
[1] | KRUSE, K. and JULICHER, F. Oscillations in cell biology. Current Opinion in Cell Biology, 17, 20–26 (2005) |
[2] | RAJPUT, V. and DAYAL, P. Dynamical attributes of nanocatalyzed self-oscillating reactions via bifurcation analyses. The Journal of Chemical Physics, 155, 064902 (2021) |
[3] | ZHANG, Z. G., DUAN, N. Y., LIN, C. G., and HUA, H. X. Coupled dynamic analysis of a heavily-loaded propulsion shafting system with continuous bearing-shaft friction. International Journal of Mechanical Sciences, 30, 2003619 (2020) |
[4] | LI, S. M., PENG, H. C., LIU, C. J., DING, C., and TANG, H. Nonlinear characteristic and chip breaking mechanism for an axial low-frequency self-excited vibration drilling robot. International Journal of Mechanical Sciences, 230, 107561 (2022) |
[5] | WANG, X. Q. and HO, G. W. Design of untethered soft material micromachine for life-like locomotion. Materials Today, 53, 197–216 (2022) |
[6] | TAY, Z. Y. Energy extraction from an articulated plate anti-motion device of a very large floating structure under irregular waves. Renewable Energy, 130, 206–222 (2019) |
[7] | RINCON, F., OGILVIE, G. I., and PROCOT, M. R. E. Self-sustaining nonlinear dynamo process in Keplerian shear flows. Physical Review Letters, 98, 254502 (2007) |
[8] | TRIVEDI, D., RAHN, C. D., KIER, W. M., and WALKER, I. D. Soft robotics: biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5, 99–117 (2008) |
[9] | BRAMBILLA, M., FERRANTE, E., BIRATTARI, M., and DORIGO, M. Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 7, 1–41 (2013) |
[10] | LU, D., WANG, L. Q., CHEN, B. H., XU, Z. T., WANG, Z. J., and XIAO, R. Shape memory behaviors of 3D printed liquid crystal elastomers. Soft Science3, 5 (2023) |
[11] | WANG, L. Q., WEI, Z. J., XU, Z. T., YU, Q. M., WU, Z. L., WANG, Z. J., and XIAO, R. Shape morphing of 3D printed liquid crystal elastomer structures with precuts. ACS Applied Polymer Materials, 5, 7477–7484 (2023) |
[12] | WIE, J. J., SHANKAR, M. R., and WHITE, T. J. Photomotility of polymers. Nature Communications, 10, 13260 (2016) |
[13] | MAEDA, S., HARA, Y., SAKAI, T., YOSHIDA, R., and HASHIMOTO, S. J. Self-walking gel. Advanced Materials, 19, 3480–3484 (2007) |
[14] | LI, K., LIU, Y. L., DAI, Y. T., and YU, Y. Light-powered self-oscillation of a liquid crystal elastomer bow. Journal of Sound and Vibration, 57, 118142 (2024) |
[15] | YOSHIDA, R. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Advanced Materials, 22, 3463–3483 (2010) |
[16] | HUA, M. T., KIM, C., DU, Y. J., WU, D., BAI, R. B., and HE, X. M. Swaying gel: chemo-mechanical self-oscillation based on dynamic buckling. Matter, 4, 1029–1041 (2021) |
[17] | WANG, Y. C., DANG, A. L., ZHANG, Z. F., YIN, R., GAO, Y. C., FENG, L., and YANG, S. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers. Advanced Materials, 32, 2004270 (2020) |
[18] | WANG, Y. C., LIU, J. Q., and YANG, S. Multi-functional liquid crystal elastomer composites. Applied Physics Reviews, 9, 011301 (2022) |
[19] | KANG, D. J., KIM, W., BAE, B., PARK, H. K., and JUNG, B. H. Direct photofabrication of refractive-index-modulated multimode optical waveguide using photosensitive sol-gel hybrid materials. Applied Physics Letters, 87, 221106 (2005) |
[20] | IKEDA, T., NAKANO, M., YU, Y., TSUTSUMI, O., and KANAZAWA, A. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Advanced Materials, 15, 201–205 (2003) |
[21] | SUN, J. H., WANG, Y. P., WEI, L., and YANG, Z. Q. Ultrafast, high-contractile electrothermal-driven liquid crystal elastomer fibers towards artificial muscles. Small, 17, 2103700 (2021) |
[22] | WEI, L. and YANG, Z. Q. The integration of sensing and actuating based on a simple design fiber actuator towards intelligent soft robots. Advanced Materials Technologies, 7, 2101260 (2022) |
[23] | LEHMANN, W., SKUPIN, H., TOLKSDORF, C., GEBHARD, E., ZENTEL, R., KRUGER, P., LOSCHE, M., and KREMER, F. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. nature, 410, 447–450 (2001) |
[24] | BAI, C. P., KANG, J. T., and WANG, Y. Q. Light-induced motion of three-dimensional pendulum with liquid crystal elastomeric fiber. International Journal of Mechanical Sciences, 26, 108911 (2024) |
[25] | XU, T. F., PEI, D. F., YU, S. Y., ZHAN, X. F., YI, M. G., and LI, C. X. Design of MXene composites with biomimetic rapid and self-oscillating actuation under ambient circumstances. ACS Applied Materials & Interfaces, 13, 31978–31985 (2021) |
[26] | ZENG, H., LAHIKAINEN, M., LIU, L., AHMED, Z., WANI, Q. M., WANG, M., YANG, H., and PRIIMAGI, A. Light fuelled freestyle self-oscillators. Nature Communications, 10, 5057 (2019) |
[27] | HU, Y., JI, Q. X., HUANG, M. J., CHANG, L. F., ZHANG, C. C., WU, G., ZI, B., BAO, N. Z., CHEN, W., and WU, Y. C. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angewandte Chemie International Edition, 60, 20511–20517 (2021) |
[28] | WIE, J. J., LEE, K. M., SMITH, M. L., VAIA, R. A., and WHITE, T. J. Torsional mechanical responses in azobenzene functionalized liquid crystalline polymer networks. Soft Matter, 9, 9303 (2013) |
[29] | GELEBART, A. H., MULDER, D. J., VARGA, M., KONYA, A., VANTOMME, G., MEIJER, E. W., SELINGER, L. B., and BROER, D. J. Making waves in a photoactive polymer film. nature, 546, 632–636 (2017) |
[30] | LIU, X. and LIU, Y. Spontaneous photo-buckling of a liquid crystal elastomer membrane. International Journal of Mechanical Sciences, 201, 106473 (2021) |
[31] | SHELLEY, M. J. and UEDA, T. The Stokesian hydrodynamics of flexing, stretching filaments. Physica D-Nonlinear Phenomena, 146, 221–245 (2000) |
[32] | KIM, Y., BERG, J., and CROSBY, A. J. Autonomous snapping and jumping polymer gels. Nature Materials, 20, 1695–1701 (2021) |
[33] | WISDOM, K. M., WATSON, J. A., QU, X. P., and CHEN, C. H. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proceedings of the National Academy of Sciences of the United States of America, 110, 7992–7997 (2013) |
[34] | LI, Z. W., MYUNY, N., and YIN, Y. D. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Science Robotics, 6, 34851711 (2021) |
[35] | HU, Z. M., LI, Y. L., and LV, J. A. Phototunable self-oscillating system driven by a self-winding fiber actuator. Nature Communications, 12, 3211 (2021) |
[36] | GE, D. L., DAI, Y. T., LIANG, H. Y., and LI, K. Self-rolling and circling of a conical liquid crystal elastomer rod on a hot surface. International Journal of Mechanical Sciences, 263, 108780 (2024) |
[37] | XU, P. B., SUN, X., DAI, Y. T., and LI, K. Light-powered sustained chaotic jumping of a liquid crystal elastomer balloon. International Journal of Mechanical Sciences, 266, 108922 (2024) |
[38] | QIU, Y. L. and LI, K. Self-rotation-eversion of an anisotropic-friction-surface torus. International Journal of Mechanical Sciences, 281, 109584 (2024) |
[39] | QIU, Y. L., GE, D. L., WU, H. Y., LI, K., and XU, P. B. Self-rotation of a liquid crystal elastomer rod under constant illumination. International Journal of Mechanical Sciences, 281, 109584 (2024) |
[40] | ZHAO, J., DAI, C. F., DAI, Y. T., WU, J., and LI, K. Self-oscillation of cantilevered silicone oil paper sheet system driven by steam. Thin-Walled Structures, 203, 112270 (2024) |
[41] | KOROL, O. G., SEVERIN, G. Y., and STRYGIN, V. V. Synchronization of self-oscillations of two close dynamic systems. Doklady Physics, 54, 426–428 (2009) |
[42] | GE, D. L. and LI, K. Self-oscillating buckling and postbuckling of a liquid crystal elastomer disk under steady illumination. International Journal of Mechanical Sciences, 221, 107233 (2022) |
[43] | LIU, C. Y., LI, K., YU, X. Z., YANG, J. P., and WANG, Z. J. A Multimodal self-propelling tensegrity structure. Advanced Materials, 36, 2314093 (2024) |
[44] | HAUSER, A. W., SUNDARAM, S., and HAYWARD, R. C. Photothermocapillary oscillators. Physical Review Letters, 121, 158001 (2018) |
[45] | YANG, H. X., ZHANG, C., CHEN, B. H., WANG, Z. J., XU, Y., and XIAO, R. Bioinspired design of stimuli-responsive artificial muscles with multiple actuation modes. Smart Materials and Structures, 32, 085023 (2023) |
[46] | ZHOU, L., CHEN, H. M., and LI, K. Optically-responsive liquid crystal elastomer thin film motors in linear/nonlinear optical fields. Thin-Walled Structures, 202, 112082 (2024) |
[47] | QIU, Y. L., WU, H. Y., DAI, Y. T., and LI, K. Behavior prediction and inverse design for self-rotating skipping ropes based on random forest and neural network. Mathematics, 12, 1019 (2024) |
[48] | AHN, C., LI, K., and CAI, S. Q. Light or thermally-powered autonomous rolling of an elastomer rod. ACS Applied Materials & Interfaces, 10, 25689–25696 (2018) |
[49] | YAKACKI, C., SAED, M., NAIR, D., GONG, T., REEDC, S. M., and BOWMANB, C. N. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. RSC Advances, 5, 18997–19001 (2015) |
[1] | . [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 81-100. |
[2] | Canchang LIU, Qian DING, Qingmei GONG, Chicheng MA, Shuchang YUE. Axial control for nonlinear resonances of electrostatically actuated nanobeam with graphene sensor[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 527-542. |
[3] | R. NAZEMNEZHAD, P. FAHIMI. Free torsional vibration of cracked nanobeams incorporating surface energy effects[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 217-230. |
[4] | Lei HOU, Yushu CHEN. Bifurcation analysis of aero-engine's rotor system under constant maneuver load[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1417-1426. |
[5] | Xiaodong WANG, Yushu CHEN, Lei HOU. Nonlinear dynamic singularity analysis of two interconnected synchronous generator system with 1:3 internal resonance and parametric principal resonance[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 985-1004. |
[6] | Demin ZHAO, Jianlin LIU, C. Q. WU. Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1017-1032. |
[7] | A. G. ARANI, G. S. JAFARI. Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1033-1044. |
[8] | Xuan XIE;Lingcheng KONG;Yuxi WANG;Jun ZHANG;Yuantai HU. Coupled vibrations and frequency shift of compound system consisting of quartz crystal resonator in thickness-shear motions and micro-beam array immersed in liquid[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 225-232. |
[9] | B. AMIRIAN;R. HOSSEINI-ARA;H. MOOSAVI. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(7): 875-886. |
[10] | 马宇立;陈继伟;刘咏泉;苏先樾. Vibration analysis of foam plates based on cell volume distribution[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(12): 1493-1504. |
[11] | 李凤明;刘春川. Parametric vibration stability and active control of nonlinear beams[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11): 1381-1392. |
[12] | 李双宝;张伟. Global bifurcations and multi-pulse chaotic dynamics of rectangular thin plate with one-to-one internal resonance[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(9): 1115-1128. |
[13] | 陈洋洋;燕乐纬;佘锦炎;陈树辉. Generalized hyperbolic perturbation method for homoclinic solutions of strongly nonlinear autonomous systems[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(9): 1137-1152. |
[14] | 张华彪;陈予恕;李军. Bifurcation on synchronous full annular rub of rigid-rotor elastic-support system[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(7): 865-880. |
[15] | 李忠刚;陈予恕. Research on 1:2 subharmonic resonance and bifurcation of nonlinear rotor-seal system[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(4): 499-510. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||