Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (5): 965-988.doi: https://doi.org/10.1007/s10483-025-3248-7
• • 上一篇
收稿日期:
2024-12-13
修回日期:
2025-03-10
发布日期:
2025-05-07
Received:
2024-12-13
Revised:
2025-03-10
Published:
2025-05-07
Contact:
S. CHOWDHURY
E-mail:Sudip.Chowdhury@glasgow.ac.uk
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 965-988.
S. CHOWDHURY, S. ADHIKARI. Structural vibration control using nonlinear damping amplifier friction vibration absorbers[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 965-988.
"
System | Reference | ||
---|---|---|---|
DAFVA | Present | 0.940 401 | 0.077 313 2 |
CDAFVA | Present | 0.940 401 | 0.073 566 0 |
NDAFVA | Present | 0.940 401 | 0.077 313 2 |
LDAFVA | Present | 0.940 401 | 0.109 806 0 |
Conventional TMD1 | Refs. [ | ||
Conventional TMD2 | Refs. [ | ||
Conventional TMD1: damper mass ratio |
"
System | Reference | ||
---|---|---|---|
DAFVA | Present | 0.940 401 | 0.095 286 4 |
CDAFVA | Present | 0.940 401 | 0.090 668 1 |
NDAFVA | Present | 0.940 401 | 0.095 286 4 |
LDAFVA | Present | 0.940 401 | 0.135 333 0 |
Conventional TMD1 | Refs. [ | ||
Conventional TMD2 | Ref. [ | ||
Conventional TMD1: damper mass ratio |
[1] | LERNER, A. A. and CUNEFARE, K.Performance of mre-based vibration absorbers. Journal of Intelligent Material Systems and Structures, 19(5), 551–563 (2008) |
[2] | LIU, K. and LIU, J.The damped dynamic vibration absorbers: revisited and new result. Journal of Sound and Vibration, 284(3-5), 1181–1189 (2005) |
[3] | YANG, C., LI, D., and CHENG, L.Dynamic vibration absorbers for vibration control within a frequency band. Journal of Sound and Vibration, 330(8), 1582–1598 (2011) |
[4] | WAGNER, N. and HELFRICH, R.Dynamic vibration absorbers and its applications. Journal of Sound and Vibration, 354, 6 (2017) |
[5] | MORADI, H., BAKHTIARI-NEJAD, F., and MOVAHHEDY, M. R.Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. Journal of Sound and Vibration, 318(1-2), 93–108 (2008) |
[6] | ALOTTA, G. and FAILLA, G.Improved inerter-based vibration absorbers. International Journal of Mechanical Sciences, 192, 106087 (2021) |
[7] | CERA, M., CIRELLI, M., PENNESTR, E., and VALENTINI, P. P.Design analysis of torsichrone centrifugal pendulum vibration absorbers. Nonlinear Dynamics, 104, 1023–1041 (2021) |
[8] | MAHÉ, V., RENAULT, A., GROLET, A., MAHÉ, H., and THOMAS, O.On the dynamic stability and efficiency of centrifugal pendulum vibration absorbers with rotating pendulums. Journal of Sound and Vibration, 536, 117157 (2022) |
[9] | LI, H., TOUZÉ, C., PELAT, A., and GAUTIER, F.Combining nonlinear vibration absorbers and the acoustic black hole for passive broadband flexural vibration mitigation. International Journal of Non-Linear Mechanics, 129, 103558 (2021) |
[10] | MAYET, J., ACAR, M. A., and SHAW, S. W.Effective and robust rocking centrifugal pendulum vibration absorbers. Journal of Sound and Vibration, 527, 116821 (2022) |
[11] | GOMEZ, E. R., ARTEAGA, I. L., and KARI, L.Normal-force dependant friction in centrifugal pendulum vibration absorbers: simulation and experimental investigations. Journal of Sound and Vibration, 492, 115815 (2021) |
[12] | CHANG, Y., ZHOU, J., WANG, K., and XU, D.A quasi-zero-stiffness dynamic vibration absorber. Journal of Sound and Vibration, 494, 115859 (2021) |
[13] | YOU, T., ZHOU, J., THOMPSON, D. J., GONG, D., CHEN, J., and SUN, Y.Vibration reduction of a high-speed train floor using multiple dynamic vibration absorbers. Vehicle System Dynamics, 60(9), 2919–2940 (2022) |
[14] | CHOWDHURY, S. and BANERJEE, A.The impacting vibration absorbers. Applied Mathematical Modelling, 127, 454–505 (2024) |
[15] | SU, N., CHEN, Z., XIA, Y., and BIAN, J.Hybrid analytical h-norm optimization approach for dynamic vibration absorbers. International Journal of Mechanical Sciences, 264, 108796 (2024) |
[16] | SU, N., BIAN, J., PENG, S., CHEN, Z., and XIA, Y.Analytical optimal design of inerter-based vibration absorbers with negative stiffness balancing static amplification and dynamic reduction effects. Mechanical Systems and Signal Processing, 192, 110235 (2023) |
[17] | ZHANG, Y., CHENG, J., XU, W., WANG, C., LIU, J., LI, Y., and YANG, S.Particle damping vibration absorber and its application in underwater ship. Journal of Vibration Engineering & Technologies, 11(5), 2231–2248 (2023) |
[18] | GUO, M., TANG, L., WANG, H., LIU, H., and GAO, S.A comparative study on transient vibration suppression of magnetic nonlinear vibration absorbers with different arrangements. Nonlinear Dynamics, 111(18), 16729–16776 (2023) |
[19] | SU, N., BIAN, J., CHEN, Z., and XIA, Y.A novel 550 lever-type inerter-based vibration absorber. International Journal of Mechanical Sciences, 254, 108440 (2023) |
[20] | ZHAO, C., ZHANG, K., ZHAO, P., and DENG, Z.Finite-amplitude nonlinear waves in inertial amplification metamaterials: theoretical and numerical analyses. Journal of Sound and Vibration, 560, 117802 (2023) |
[21] | ZHAO, C., ZHANG, K., ZHAO, P., HONG, F., and DENG, Z.Bandgap merging and backward wave propagation in inertial amplification metamaterials. International Journal of Mechanical Sciences, 250, 108319 (2023) |
[22] | MA, H., CHENG, Z., SHI, Z., and MARZANI, A.Structural vibration mitigation via an inertial amplification mechanism based absorber. Engineering Structures, 295, 116764 (2023) |
[23] | SETTIMI, V., LEPIDI, M., and BACIGALUPO, A.Analytical spectral design of mechanical metamaterials with inertia amplification. Engineering Structures, 274, 115054 (2023) |
[24] | GEWEI, Z. and BASU, B.A study on friction-tuned mass damper: harmonic solution and statistical linearization. Journal of Vibration and Control, 17(5), 721–731 (2011) |
[25] | WARBURTON, G. B.Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 10(3), 381–401 (1982) |
[26] | ZILLETTI, M., ELLIOTT, S. J., and RUSTIGHI, E.Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. Journal of Sound and Vibration, 331(18), 4093–4100 (2012) |
[27] | IWATA, Y.On the construction of the dynamic vibration absorbers. Japanese Society of Mechanical Engineering, 820(8), 150–152 (1982) |
[28] | ORMONDROYD, J. and DEN HARTOG, J. P.The theory of the dynamic vibration absorber. Journal of Fluids Engineering, 49(2), 021007 (1928) |
[29] | NISHIHARA, O. and ASAMI, T.Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors). Journal of Vibration and Acoustics, 124(4), 576–582 (2002) |
[30] | KRENK, S.Frequency analysis of the tuned mass damper. Journal of Applied Mechanics, 72, 936–942 (2005) |
[31] | KIUREGHIAN, A. D. and NEUENHOFER, A.Response spectrum method for multi-support seismic excitations. Earthquake Engineering & Structural Dynamics, 21(8), 713–740 (1992) |
[1] | . [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 849-868. |
[2] | . [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 907-926. |
[3] | . [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(4): 601-616. |
[4] | . [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 253-268. |
[5] | . [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 81-100. |
[6] | Canchang LIU, Qian DING, Qingmei GONG, Chicheng MA, Shuchang YUE. Axial control for nonlinear resonances of electrostatically actuated nanobeam with graphene sensor[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 527-542. |
[7] | R. NAZEMNEZHAD, P. FAHIMI. Free torsional vibration of cracked nanobeams incorporating surface energy effects[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 217-230. |
[8] | Lei HOU, Yushu CHEN. Bifurcation analysis of aero-engine's rotor system under constant maneuver load[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1417-1426. |
[9] | Xiaodong WANG, Yushu CHEN, Lei HOU. Nonlinear dynamic singularity analysis of two interconnected synchronous generator system with 1:3 internal resonance and parametric principal resonance[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 985-1004. |
[10] | Demin ZHAO, Jianlin LIU, C. Q. WU. Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1017-1032. |
[11] | A. G. ARANI, G. S. JAFARI. Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1033-1044. |
[12] | Xuan XIE;Lingcheng KONG;Yuxi WANG;Jun ZHANG;Yuantai HU. Coupled vibrations and frequency shift of compound system consisting of quartz crystal resonator in thickness-shear motions and micro-beam array immersed in liquid[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 225-232. |
[13] | B. AMIRIAN;R. HOSSEINI-ARA;H. MOOSAVI. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(7): 875-886. |
[14] | 马宇立;陈继伟;刘咏泉;苏先樾. Vibration analysis of foam plates based on cell volume distribution[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(12): 1493-1504. |
[15] | 李凤明;刘春川. Parametric vibration stability and active control of nonlinear beams[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11): 1381-1392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||