[1] Hsu,C.S.,Limit cycle oscillations of parametrically excited second-order nonlinear systems,J.Appl.Mech.,42(1975),176-182.
[2] Riganti,R.,A Study on the Forced Vibrations of a Class on Nonlinear Sgstems with Application to the Duffing Equation Part II:Numerical Treatment,Mechanica,11(1976),81-88.
[3] Mayfeh,A.H.and D.T.Mook,Nonlinear Oscillations.John Wiley & Sons,New York-Chichester-Brisbane-Toronto(1979).
[4] Poincaré,H.,Mémoire sur les courbes définies par une équations différentielles,J.Math.3,Série,7(1881),375-422.
[5] Hsu,C.S.,Nonlinear Behaviour of Multibody Systems under Impulsive Parametric Excitation,in"Dynamics of Multibody Systems,"Springer,Berlin-Heidelberg-New York(1977).
[6] Hsu,C.S.,On Nonlinear Parametric Excitation Problems,Adv.Appl.Mech.,17(1977),245-301.
[7] Urabe,M.,Numerical determination of periodic solution of nonlinear sgstem,J.Sci.Hiroshima Univ.Ser.A,20(1957),125-148.
[8] Urabe,M.,Infinitesimal deformation of cycles.J.Sci.Hiroshima Univ.Ser.A.18(1954),37-53.
[9] Urabe,M.,Remarks on periodic solutions of Van der Pol’s equation,J.Sci.Hiroshima Univ.Ser.A,24(1960),197-199.
[10] Urabe,M.,Nonlinear Autonomous Oscillations,Akademic Press,New York-London(1967).
[11] Ruf.W.-D.,Numerische Lösung des Diffing-Problems.Diplomarbeit,Institut A fur Mechanik,Uni.Stuttgart(1978).
[12] Ling,F.H.,Numerische Bereahung periodischer Lösungen einiger nichtlinearer Schwingungssysteme,Dissertation,Uni.Stuttgart(1981).
[13] Poincare,H.,Les Méthodesnouvelles de la mecanique céleste Vol.1,Guathiervillars,Paris(1892).
[14] Liapunov,A.M.,Stability of Motion,Akademic Press,New York(1966).
[15] Malkin,I.G.,Liapunov’s Method and Pogncare’s Method in the Theory of Nonlinear Vibrations,(in Russian).
[16] Malkin,J.G.,Theorie der Stabilitat einer Bewegung,Verlag,ǒldenburg,Munchen(1959).
[17] Kane,T.R.and D.Sobala,A new method for attitude stabilization,AIAA J.,1(1963),1365-1367.
[18] Stoer,J.and R.Bulirsch,Einführung in die Numerische Mathematik Ⅱ,Springer,Berlin-Heidelberg-New York(1978).
[19] Fehlberg,E.,Klassische Runge-Kutta Formeln funfter und siebenter Ordnung mit Schrittweiten-Kontrolle,Computing,4(1969),93-106.
[20] Fehlberg,E.,Klassische Runge-Kutta Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme,Computing,6(1970),61-71.
[21] Shampine,L.F.and M.K.Gordon,Computer Solution of Ordinary Differential Equations,The initial Value Problem,W.H.Freema and Company,San Francisco(1975).
[22] Stoker,J.J.,Nonlinear Vibrations in Mechanical and Electrical Systems,Interscience Publishers,New York-London(1950).
[23] Schrapel,H.D.,Erweiterung eines Satzes von Andronow und Witt,ZAMM 57(1977),T89-T90.
[24] Moler,C.and C.Van Loan,Nineteen dubious ways to compute the exponential of a matrix,SIAM Rev.,20(1978),801-836.
[25] Friedmann,P.,C.E.Hammond and T.-H.Woo,Efficient numerical treatment of periodic systems with application to stability problems,Int.J.NUm.Math.Eng.,11(1977),1117-1136.
[26] Hsu,C.S.,Impulsive parametrix excitation:theory,J.Appl Mech.,39(1972),551-558.
[27] Hsu,C.S.and W.H.Cheng,Applications of the theory of impulsive parametric excitation and new treatments of general parametrix excitation problems,J.Appl.Mech.,40(1973),78-86.
[28] Urabe,M.and A.Reiter,Numerical computation of nonlinear forced oscillations by Galerkin’s procedure,J.Math.Anal.Appl.14(1966),107-140.
[29] Rosenberg,R.M.and C.P.Atkinson,On the natural modes and their stability in nonlinear two-degree-of-freedom systems,J.Appl.Mech.,26(1959),377-385.
[30] Sehtna,P.R.,Steady-state undamped vibrations of a class of nonlinear discrete systems,J.Appl Mech.,27(1960),187-195.
[31] Van Dooren,R.,Differential tones in a damped mechanical system with quadratic and cubic non-linearities,Int.J.Nonlinear Mech.,8. (1973),575-583. |