[1] |
N. HUMNEKAR, D. SRINIVASACHARYA. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580. |
[2] |
I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[3] |
Tiehong ZHAO, M. R. KHAN, Yuming CHU, A. ISSAKHOV, R. ALI, S. KHAN. Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1205-1218. |
[4] |
J. K. MADHUKESH, G. K. RAMESH, B. C. PRASANNAKUMARA, S. A. SHEHZAD, F. M. ABBASI. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1191-1204. |
[5] |
T. MUSHTAQ, A. RAUF, S. A. SHEHZAD, F. MUSTAFA, M. HANIF, Z. ABBAS. Numerical and statistical approach for Casson-Maxwell nanofluid flow with Cattaneo-Christov theory[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 1063-1076. |
[6] |
K. RAMESH, M. G. REDDY, B. SOUAYEH. Electro-magneto-hydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 593-606. |
[7] |
Yuming CHU, M. I. KHAN, M. I. U. REHMAN, S. KADRY, S. QAYYUM, M. WAQAS. Stability analysis and modeling for the three-dimensional Darcy-Forchheimer stagnation point nanofluid flow towards a moving surface[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 357-370. |
[8] |
N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1511-1524. |
[9] |
M. KHAN, J. AHMED, F. SULTANA, M. SARFRAZ. Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1125-1138. |
[10] |
S. M. SAID. Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 819-832. |
[11] |
M. KHAN, M. SARFRAZ, J. AHMED, L. AHMAD, C. FETECAU. Non-axisymmetric Homann stagnation-point flow of Walter's B nanofluid over a cylindrical disk[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 725-740. |
[12] |
S. A. SHEHZAD, S. U. KHAN, Z. ABBAS, A. RAUF. A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 521-532. |
[13] |
M. H. A. KAMAL, N. A. RAWI, A. ALI, S. SHAFIE. Effects of g-jitter and radiation on three-dimensional double diffusion stagnation point nanofluid flow[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(11): 1707-1722. |
[14] |
G. C. SHIT, S. MUKHERJEE. MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1269-1284. |
[15] |
K. RAMESH, O. OJJELA. Entropy generation analysis of natural convective radiative second grade nanofluid flow between parallel plates in a porous medium[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 481-498. |