[1] Back L H, Liem T K, Kwack E Y. et al. Flow measurements in a highly curved atherosclerotic coronary artery cast on man[J]. J Biomechanical Engineering, 1992,114(2): 232-240.
[2] Perktold K, Resch M. Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis[J]. J Biomedical Eng, 1990,12(1): 111-123.
[3] Fry D L. Certain histological and chemical responses of the vascular interface of acutely induced mechanical stress in the aorta of the dog[J]. Circulation Research, 1969,24(1):93-109.
[4] Fry D L, Vaishnav R N. Mass transport in the arterial wall basic hemodynamics and its role[A].In: Patel D J, Vaishnav R N Eds. Disease Processes[C],University Park Press,1980,77-95.
[5] Liepsch D, Moravec S, Rastogi A K, et al. Measurement and calaulations of laminar flow in a ninety degree bifurcation[J]. J Biomechanics, 1982,15(7): 473-485.
[6] Perktold K, Resch M, Reinfried O P. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation[J]. J Biomechanics, 1991,24(6):409-420.
[7] Kawaguti M, Hamano A. Numerical study of bifurcating flow of a viscous fluid[J]. J Phys Soc(Japan), 1979,46(4): 1360-1365.
[8] Kawaguti M, Hamano A. Numerical study of bifurcating flow of a viscous fluid-Ⅱ: Pulsatile flow[J]. J Phys Soc(Japan),1980,49(2):817-824.
[9] O' Brien V, Ehrlich L W. Simulation of unsteady flow at renal branches[J]. J Biomechanics,1977,10(10):623-631.
[10] Lutz R J, Hsu L, Menawat A. Comparision of steady and pulsatile flow in a double branching arterial model[J]. J Biomechanics, 1983,16(9):753-766.
[11] Fernandez R C, DeWitt K J, Botwin M R. Pulsatile flow through a bifurcation with applications to arterial disease[J]. J Biomechanics, 1976,9(9):575-580.
[12] Khodadadi J M, Vlachos N S, Liepsch D. LDL measurements and numerical prediction of pulsatile laminar flow in a plane 90-degree bifurcation[J]. J Biomechanical Engineering, 1988,110(2): 129-136.
[13] Rappitisch G, Perktold K. Pulsatile albumin transport in large arteries: A numerical simulation study[J]. J Biomechanicl Engeering, 1996,118(4):511-519.
[14] Barter P J, Rye K. A high density lipoproteins and coronary heart disease[J]. Atherosclerosis,1996,121(1):1-12.
[15] Ojha M. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model[J]. J Biomechanics, 1983,26(12): 1377-1388.
[16] He X Y, Ku D N. Pulsatile flow in the human left coronary artery bifurcation: average conditions[J]. J Biomechanical Engineering, 1996,118(1): 74-82.
[17] Back L H, Liem T K, Kwack E Y, et al. Flow measurements in a highly curved atherosclerotic coronary artery cast of man[J]. J Biomechanical Engineering, 1992,114(2):232-240.
[18] Karino T, Deng X Y, Naiki T. Flow-dependent concentration polarization of lipoproteins at the blood-endothelium boundary[A]. In: Hochmuth R M, Langrana N A, Hefzy M S Eds. Proceedings of the 1995 Bioengineering Conference[C]. Berlin, Heidelberg, New York: Springer-Verlag, 1995.
[19] Jo H, Dull R O, Hollis T M, et al. Endothelial albumin permeability is shear dependent, time dependent and reversible[J]. American J Physiology, 1991,260: H1992-H1996.
[20] Friedman M H, Peters O J, Bargeron C B, et al. Shear-dependent thickening of the human arterial intima[J]. Atheros clerosis, 1986,60(2): 161-170.
[21] Rappitsch G, Pektold K. Computer simulation of convective diffusion processes in large arteries[J]. J Biomechanics, 1996,29(2):207-215.
[22] Langeler E G, Ineke S H, Victor W M, et al. Passage of low density lipoproteins through monolayers of human arterial endothelidal ceils-effects of vasoactive substance in an in vitro[J].Arteriosclerosis, 1989,9(4): 550-559. |