Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (6): 769-778 .doi: https://doi.org/10.1007/s10483-008-0608-y

• Articles • 上一篇    下一篇

重构高阶导数的磨光方法

赵振宇1,2,贺国强1   

  1. 1.上海大学理学院,上海 200444;
    2.广东海洋大学理学院,广东 湛江 524088
  • 收稿日期:2007-07-24 修回日期:2008-03-20 出版日期:2008-06-18 发布日期:2008-06-18
  • 通讯作者: 贺国强

Reconstruction of high order derivatives by new mollification methods

ZHAO Zhen-yu1,2, HE Guo-qiang1   

  1. 1. College of Sciences,~~Shanghai University, Shanghai 200444, P. R. China;
    2. College of Sciences,~~Guangdong Ocean University,Zhanjiang 524088,Guangdong Province, P. R. China
  • Received:2007-07-24 Revised:2008-03-20 Online:2008-06-18 Published:2008-06-18
  • Contact: HE Guo-qiang

摘要: 考虑由扰动数据重构原函数的导数问题。基于L-广义解正则化理论,提出了一个新的磨光方法的框架。给出一个具体的求解前3阶导数的算法,其中正则化策略选择了一种改进的TSVD
(truncated singular value decomposition)方法(典型TSVD方法),数值结果进一步验证了理论结果及新方法的有效性。

关键词: 不适定问题, L-广义解, 磨光方法, 数值微分, 典型TSVD方法

Abstract: In this paper, the problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on the L
generalized solution regularization methods is proposed. A specific algorithm for the first three derivatives is presented in the paper, in which a modification of TSVD, termed cTSVD is chosen as the regularization technique. Numerical examples given in the paper verify the theoretical results and show efficiency of the new method.

Key words: mollification method, L generalized solution, cTSVD method, ill-posed problem, numerical differentiation

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals