Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (9): 1203-1214 .doi: https://doi.org/10.1007/s10483-008-0909-2

• Articles • 上一篇    下一篇

Sobolev方程各向异性矩形非协调有限元分析

石东洋,王海红,郭城   

  1. 郑州大学 数学系,郑州 450052
  • 收稿日期:2008-01-18 修回日期:2008-08-01 出版日期:2008-09-10 发布日期:2008-09-10
  • 通讯作者: 石东洋

Anisotropic rectangular nonconforming finite element analysis for Sobolev equations

SHI Dong-yang, WANG Hai-hong, GUO Cheng   

  1. Department of Mathematics, Zhengzhou University, Zhengzhou 450052, P. R. China
  • Received:2008-01-18 Revised:2008-08-01 Online:2008-09-10 Published:2008-09-10
  • Contact: SHI Dong-yang

摘要: 研究了Sobolev方程的各向异性矩形非协调有限元方法.在半离散和全离散格式下,得到了与传统协调有限元方法相同的最优误差估计和超逼近性质.进一步利用插值后处理技术得到了整体超收敛结果.最后的数值结果表明了理论分析的正确性.

关键词: 非协调元, 各向异性, Sobolev方程, 误差估计, 超收敛

Abstract: An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes. The corresponding optimal convergence error estimates and superclose property are derived, which are the same as the traditional conforming finite elements. Furthermore, the global superconvergence is obtained using a post-processing technique. The numerical results show the validity of the theoretical analysis.

Key words: error estimates, superconvergence, nonconforming element, anisotropy, Sobolev equations

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals