[1] Eastman, J. A., Choi, S. U. S., Li, S., Yu,W., and Thompson, L. J. Anomalously increased effectivethermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl.Phys. Lett., 78, 718-720 (2001)
[2] Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. Measuring thermal conductivity of fluidscontaining oxide nanoparticles. Journal of Heat Transfer, 121, 280-289 (1999)
[3] Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A. Anomalous thermalconductivity enhancement in nanotube suspensions. Appl. Phys. Lett., 79, 2252-2254 (2001)
[4] Xuan, Y. and Li, Q. Heat transfer enhancement of nanofluids. International Journal of Heat andMass Transfer, 21, 58-64 (2000)
[5] Batchelor, G. K. Sedimentation in a dilute dispersion of spheres. Journal of Fluid Mechanics, 52,245-268 (1972)
[6] Batchelor, G. K. and Green, J. T. The hydrodynamic interaction of two small freely-movingspheres in a linear flow field. Journal of Fluid Mechanics, 56, 375-400 (1972)
[7] Bonnecaze, R. T. and Brady, J. F. A method for determining the effective conductivity of disper-sions of particles. Proc. R. Soc. Lond. A, 430, 285-313 (1990)
[8] Bonnecaze, R. T. and Brady, J. F. The effective conductivity of random suspensions of sphericalparticles. Proc. R. Soc. Lond. A, 432, 445-465 (1991)
[9] Davis, R. H. The effective thermal conductivity of a composite material with spherical inclusions.International Journal of Themophysics, 7, 609-620 (1986)
[10] Hamilton, R. L. and Crosser, O. K. Thermal conductivity of heterogeneous two-component sys-tems. Industrial and Engineering Chemistry Fundamentals, 1, 187-191 (1962)
[11] Jeffrey, D. J. Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A, 335,355-367 (1973)
[12] Lu, S. and Lin, H. Effective conductivity of composites containing aligned spheroidal inclusionsof finite conductivity. Journal of Applied Physics, 79, 6761-6769 (1996)
[13] Maxwell, J. C. A Treatise on Electricity and Magnetism, 3rd ed., Clarendon Press, New York,435-441 (1891)
[14] Congedo, P. M., Collura, S., and Congedo, P. M. Modeling and analysis of natural convectionheat transfer in nanofluids. Proceedings of ASME Summer Heat Transfer Conference, 3, 569-579(2009)
[15] Ghasemi, B. and Aminossadati, S. M. Natural convection heat transfer in an inclined enclosurefilled with a water-CuO nanofluid. Numerical Heat Transfer, Part A: Applications, 55, 807-823(2009)
[16] Ho, C. J., Chen, M.W., and Li, Z.W. Numerical simulation of natural convection of nanofluid in asquare enclosure: effects due to uncertainties of viscosity and thermal conductivity. InternationalJournal of Heat and Mass Transfer, 51, 4506-4516 (2008)
[17] Ho, C. J., Chen, M. W., and Li, Z. W. Effect of natural convection heat transfer of nanofluid in anenclosure due to uncertainties of viscosity and thermal conductivity. Proceedings of ASME/JSMEThermal Engineering Summer Heat Transfer Conference, 1, 833-841 (2007)
[18] Hamad, M. A. A., Pop, I., and Ismail, A. I. Magnetic field effects on free convection flow of ananofluid past a vertical semi-infinite flat plate. Nonlinear Analysis: Real World Application, 12,1338-1346 (2011)
[19] Hamad, M. A. A. and Pop, I. Unsteady MHD free convection flow past a vertical permeable flatplate in a rotating frame of reference with constant heat source in a nanofluid. Heat and MassTransfer, 47, 1517-1524 (2011) DOI 10.1007/s00231-011-0816-6
[20] Hamad, M. A. A. Analytical solution of natural convection flow of a nanofluid over a linearlystretching sheet in the presence of magnetic field. International Communications in Heat andMass Transfer, 38, 487-492 (2011)
[21] Hamad, M. A. A. and Ferdows, M. Similarity solution of boundary layer stagnation-point flow to-wards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generationand suction/blowing: a Lie group analysis. Communications in Nonlinear Science and NumericalSimulation, 17, 132-140 (2012)
[22] Das, S. K., Choi, S. U. S., Yu, W., and Pradeep, T. Nanofluids: Science and Technology, Wiley,New Jersey (2007)
[23] Trisaksri, V. and Wongwises, S. Critical review of heat transfer characteristics nanofluids. Renew-able and Sustainable Energy Reviews, 11, 512-523 (2007)
[24] Wang, X. Q. and Mujumdar, A. S. Heat transfer characteristics of nanofluids: a review. Interna-tional Journal of Thermal Sciences, 46, 1-19 (2007)
[25] Kakac, S. and Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanoflu-ids. International Journal of Heat and Mass Transfer, 52, 3187-3196 (2009)
[26] Gupta, P. S. and Gupta, A. S. Heat and mass transfer on a stretching sheet with suction orblowing. Canadian Journal of Chemical Engineering, 55, 744-746 (1977)
[27] Vajravelu, K. Viscous flow over a nonlinearly stretching sheet. Applied Mathematics and Compu-tation, 124, 281-288 (2001)
[28] Raptis, A. and Perdikis, C. Viscous flow over a non-linearly stretching sheet in the presence of achemical reaction and magnetic field. International Journal of Non-Linear Mechanics, 41, 527-529(2006)
[29] Bataller, R. C. Similarity solutions for flow and heat transfer of a quiescent fluid over a non-linearlystretching surface. Journal of Materials Processing Technology, 203, 176-183 (2008)
[30] Prasad, K. V. and Vajravelu, K. Heat transfer in the MHD flow of a power law fluid over anon-isothermal stretching sheet. International Journal of Heat and Mass Transfer, 52, 4956-4965(2009)
[31] Ziabakhsh, Z., Domairry, G., Bararnia, H., and Babazadeh, H. Analytical solution of flow anddiffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porousmedium. Journal of the Taiwan Institute of Chemical Engineers, 41, 22-28 (2010)
[32] Akyildiz, F. T. and Siginer, D. A. Galerkin-Legendre spectral method for the velocity and thermalboundary layers over a non-linearly stretching sheet. Nonlinear Analysis: Real World Applications,11, 735-741 (2010)
[33] Prasad, K. V., Vajravelu, K., and Datti, P. S. Mixed convection heat transfer over a non-linearstretching surface with variable fluid properties. International Journal of Non-Linear Mechanics,45, 320-330 (2010)
[34] Afzal, N. Momentum and thermal boundary layers over a two-dimensional or axisymmetric non-linear stretching surface in a stationary fluid. International Journal of Heat and Mass Transfer,53, 540-547 (2010)
[35] Cortell, R. Viscous flow and heat transfer over a nonlinearly stretching sheet. Applied Mathematicaland Computation, 184, 864-873 (2007)
[36] Oztop, H. F. and Abu-Nada, E. Numerical study of natural convection in partially heated rectan-gular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326-1336 (2008)
[37] Aminossadati, S. M. and Ghasemi, B. Natural convection cooling of a localized heat source atthe bottom of a nanofluid-filled enclosure. European Journal of Mechanics B/Fluids, 28, 630-640(2009) |