[1] Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B. Buoyancy-Induced Flows and Transport, Hemisphere, New York (1988)
[2] Schlichting, H. and Gersten, K. Boundary Layer Theory, Springer, New York (2003)
[3] Pop, I. and Ingham, D. B. Convective Heat Transfer:Mathematical and Computational Viscous Fluids and Porous Media, Pergamon, Oxford (2001)
[4] Bejan, A. Convection Heat Transfer, Wiley, New Jersey (2013)
[5] Wilks, G. The flow of a uniform stream over a semi-infinite vertical flat plate with uniform surface heat flux. International Journal of Heat and Mass Transfer, 17, 743-753(1974)
[6] Merkin, J. H. Free convection on a heated vertical plate:the solution for small Prandtl number. Journal of Engineering Mathematics, 23, 273-282(1989)
[7] Merkin, J. H. and Mahmood, T. On the free convection boundary layer on a vertical plate with prescribed surface heat flux. Journal of Engineering Mathematics, 24, 95-107(1990)
[8] Merkin, J. H. and Mahmood, T. Mixed convection boundary layer similarity solutions:prescribed wall heat flux. Journal of Applied Mathematics and Physics (ZAMP), 40, 51-68(1989)
[9] Ghosh, M. S. and Yao, L. S. Mixed convection along a semi-infinite vertical flat plate with uniform surface heat flux. ASME Journal of Heat Transfer, 131, 022502-1-022502-8(2009)
[10] Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Engineering Division, 231, 99-105(1995)
[11] Khanafer, K., Vafai, K., and Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46, 3639-3653(2003)
[12] Ding, Y., Chen, H., Wang, L., Yang, C. Y., He, Y., Yang, W., Lee, W. P., Zhang, L., and Huo, R. Heat transfer intensification using nanofluids. Kona, 25, 23-38(2007)
[13] Tiwari, R. K. and Das, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50, 2002-2018(2007)
[14] Oztop, H. F. and Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326-1336(2008)
[15] Khanafer, K. and Vafai, K. A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4410-4428(2011)
[16] Ahmad, S. and Pop, I. Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. International Communications in Heat and Mass Transfer, 37, 987-991(2010)
[17] Ahmad, S., Rohni, A. M., and Pop, I. Blasius and Sakiadis problems in nanofluids. Acta Mechanica, 218, 195-204(2011)
[18] Rohni, A. M., Ahmad, S., and Pop, I. Boundary layer flow over a moving surface in a nanofluid beneath a uniform free stream. International Journal of Numerical Methods for Heat & Fluid Flow, 21, 828-846(2011)
[19] Rohni, A. M., Ahmad, S., and Pop, I. Flow and heat transfer over an unsteady shrinking sheet with suction in nanofluids. International Journal of Heat and Mass Transfer, 55, 1888-1895(2012)
[20] Rohni, A. M., Ahmad, S., Merkin, J. H., and Pop, I. Mixed convection boundary layer flow along a vertical cylinder embedded in a porous medium filled by a nanofluid. Transport Porous Media, 96, 237-253(2013)
[21] Jashim, U. M., Pop, I., and Ismail, M. A. I. Free convection boundary layer flow of a nanofluid from a convectively heated vertical plate with linear momentum slip boundary condition. Sains Malaysiana, 41, 1475-1482(2012)
[22] Rosca, A. V., Rosca, N. C., Grosan, T., and Pop, I. Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous media. International Communications in Heat and Mass Transfer, 39, 1080-1085(2012)
[23] Natalia, C., Rosca, T. G. and Pop, I. Stagnation-point flow and mass transfer with chemical reaction past a permeable stretching/shrinking sheet in a nanofluid. Sains Malaysiana, 41, 1271-1279(2012)
[24] Bachok, N., Ishak, A., Nazar, R., and Pop, I. Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B, 405, 4914-4918(2010)
[25] Bachok, N., Ishak, A., and Pop, I. Flow and heat transfer characteristics on a moving plate in a nanofluid. International Journal of Heat and Mass Transfer, 55, 642-648(2012)
[26] Trimbitas, R., Grosan, T., and Pop, I. Mixed convection boundary layer flow along vertical thin needles in nanofluids. International Journal of Numerical Methods for Heat & Fluid Flow, 24, 579-594(2014)
[27] Patrulescu, F. O., Grosan, T., and Pop, I. Mixed convection boundary layer flow from a vertical truncated cone in a nanofluid. International Journal of Numerical Methods for Heat & Fluid Flow, 24, 1175-1190(2014)
[28] Das, S. K., Choi, S. U. S., Yu, W., and Pradet, T. Nanofluids:Science and Technology, Wiley, New Jersey (2007)
[29] Kakaç, S. and Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52, 3187-3196(2009)
[30] Wong, K. F. V. and Leon, O. D. Applications of nanofluids:current and future. Advances in Mechanical Engineering, 519659(2010)
[31] Saidur, R., Kazi, S. N., Hossain, M. S., Rahman, M. M., and Mohammed, H. A. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable and Sustainable Energy Reviews, 15, 310-323(2011)
[32] Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., and Wongwises, S. A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57, 582-594(2013)
[33] Brinkman, H. C. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20, 571-581(1952)
[34] Weidman, P. D., Kubitschek, D. G., and Davis, A. M. J. The effect of transpiration on selfsimilar boundary layer flow over moving surface. International Journal of Engineering Science, 44, 730-737(2006)
[35] Rosca, A. V. and Pop, I. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. International Journal of Heat and Mass Transfer, 60, 355-364(2013)
[36] Shampine, L. F., Gladwell, I., and Thompson, S. Solving ODEs with MATLAB, Cambridge University Press, Cambridge (2003)
[37] Shampine, L. F., Reichelt, M. W., and Kierzenka, J. Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. http://www.mathworks.com/bvp_tutorial
[38] Driscoll, T. A., Hale, N., and Trefethen, L. N. Chebfun Guide, Pafnuty Publications, Oxford (2014) |