Applied Mathematics and Mechanics (English Edition) ›› 2016, Vol. 37 ›› Issue (2): 215-226.doi: https://doi.org/10.1007/s10483-016-2026-8

• 论文 • 上一篇    下一篇

Analysis of periodic and aperiodic convective stability of double diffusive nanofluid convection in rotating porous layer

S. AGARWAL1, P. RANA2   

  1. 1. Department of Mathematics, Amity Institute of Applied Sciences, Amity University, Noida 201303, Uttar Pradesh, India;
    2. Department of Mathematics, Jaypee Institute of Information Technology, Noida 201301, Uttar Pradesh, India
  • 收稿日期:2015-04-01 修回日期:2015-07-02 出版日期:2016-02-01 发布日期:2016-02-01
  • 通讯作者: P. RANA E-mail:puneetranaiitr@gmail.com

Analysis of periodic and aperiodic convective stability of double diffusive nanofluid convection in rotating porous layer

S. AGARWAL1, P. RANA2   

  1. 1. Department of Mathematics, Amity Institute of Applied Sciences, Amity University, Noida 201303, Uttar Pradesh, India;
    2. Department of Mathematics, Jaypee Institute of Information Technology, Noida 201301, Uttar Pradesh, India
  • Received:2015-04-01 Revised:2015-07-02 Online:2016-02-01 Published:2016-02-01
  • Contact: Ping LIU E-mail:puneetranaiitr@gmail.com

摘要:

The onset of periodic and aperiodic convection in a binary nanofluid satu-rated rotating porous layer is studied considering constant flux boundary conditions. The porous medium obeys Darcy's law, while the nanofluid envisages the effects of the Brow-nian motion and thermophoresis. The Rayleigh numbers for stationary and oscillatory convection are obtained in terms of various non-dimensional parameters. The effect of the involved physical parameters on the aperiodic convection is studied graphically. The results are validated in comparison with the published literature in limiting cases of the present study.

关键词: rotating porous medium, nanofluid, thermophoretic flux, natural convection

Abstract:

The onset of periodic and aperiodic convection in a binary nanofluid satu-rated rotating porous layer is studied considering constant flux boundary conditions. The porous medium obeys Darcy's law, while the nanofluid envisages the effects of the Brow-nian motion and thermophoresis. The Rayleigh numbers for stationary and oscillatory convection are obtained in terms of various non-dimensional parameters. The effect of the involved physical parameters on the aperiodic convection is studied graphically. The results are validated in comparison with the published literature in limiting cases of the present study.

Key words: rotating porous medium, natural convection, nanofluid, thermophoretic flux

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals