[1] Yarin, A. L. Drop impact dynamics:splashing, spreading, receding, bouncing. Annual Review of Fluid Mechanics, 38, 159-192(2006) [2] Wang, F. C., Yang, F. Q., and Zhao, Y. P. Size effect on the coalescence-induced self-propelled droplet. Applied Physics Letters, 98(5), 053112(2011) [3] Liang, G. T., Shen, S. Q., Guo, Y. L., and Zhang, J. L. Boiling from liquid drops impact on a heated wall. International Journal of Heat and Mass Transfer, 100, 48-57(2016) [4] Wang, F. C., Feng, J. T., and Zhao, Y. P. The head-on colliding process of binary liquid droplets at low velocity:high-speed photography experiments and modeling. Journal of Colloid and Interface Science, 326(1), 196-200(2008) [5] Liang, G. T. and Mudawar, I. Review of mass and momentum interactions during drop impact on a liquid film. International Journal of Heat and Mass Transfer, 101, 577-599(2016) [6] Agbaglah, G. and Deegan, R. D. Growth and instability of the liquid rim in the crown splash regime. Journal of Fluid Mechanics, 752, 485-496(2014) [7] Deegan, R. D., Brunet, P., and Eggers, J. Complexities of splashing. Nonlinearity, 21(1), C1-C11(2008) [8] Yarin, A. L. and Weiss, D. A. Impact of drops on solid-surfaces-self-similar capillary waves, and splashing as a new-type of kinematic discontinuity. Journal of Fluid Mechanics, 283, 141-173(1995) [9] Cossali, G. E., Coghe, A., and Marengo, M. The impact of a single drop on a wetted solid surface. Experiments in Fluids, 22(6), 463-472(1997) [10] Rioboo, R., Bauthier, C., Conti, J., Voue, M., and De Coninck, J. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Experiments in Fluids, 35(6), 648-652(2003) [11] Roisman, I. V. and Tropea, C. Impact of a drop onto a wetted wall:description of crown formation and propagation. Journal of Fluid Mechanics, 472, 373-397(2002) [12] Trujillo, M. F. and Lee, C. F. Modeling crown formation due to the splashing of a droplet. Physics of Fluids, 13(9), 2503-2516(2001) [13] Josserand, C. and Zaleski, S. Droplet splashing on a thin liquid film. Physics of Fluids, 15(6), 1650-1657(2003) [14] Cossali, G. E., Marengo, M., Coghe, A., and Zhdanov, S. The role of time in single drop splash on thin film. Experiments in Fluids, 36(6), 888-900(2004) [15] Gao, X. and Li, R. Impact of a single drop on a flowing liquid film. Physical Review E, 92(5), 053005(2015) [16] Weiss, D. A. and Yarin, A. L. Single drop impact onto liquid films:neck distortion, jetting, tiny bubble entrainment, and crown formation. Journal of Fluid Mechanics, 385, 229-254(1999) [17] Thoroddsen, S. T. The ejecta sheet generated by the impact of a drop. Journal of Fluid Mechanics, 451, 373-381(2002) [18] Thoraval, M. J., Takehara, K., Etoh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S., and Thoroddsen, S. T. Von Karman vortex street within an impacting drop. Physical Review Letters, 108(26), 264506(2012) [19] Howison, S. D., Ockendon, J. R., Oliver, J. M., Purvis, R., and Smith, F. T. Droplet impact on a thin fluid layer. Journal of Fluid Mechanics, 542, 1-23(2005) [20] Liang, G. T., Guo, Y. L., and Shen, S. Q. Analysis of liquid sheet and jet flow mechanism after droplet impinging onto liquid film (in Chinese). Acta Physica Sinica, 62(2), 024705(2013) [21] Coppola, G., Rocco, G., and de Luca, L. Insights on the impact of a plane drop on a thin liquid film. Physics of Fluids, 23(2), 022105(2011) [22] Zhang, L. V., Toole, J., Fezzaa, K., and Deegan, R. D. Evolution of the ejecta sheet from the impact of a drop with a deep pool. Journal of Fluid Mechanics, 690, 5-15(2012) [23] Xu, X. Y., Ouyang, J., Jiang, T., and Li, Q. Numerical analysis of the impact of two droplets with a liquid film using an incompressible SPH method. Journal of Engineering Mathematics, 85(1), 35-53(2014) [24] Shi, Z. Y., Yan, Y. H., Yang, F., Qian, Y. H., and Hu, G. H. A lattice Boltzmann method for simulation of a three-dimensional drop impact on a liquid film. Journal of Hydrodynamics, 20(3), 267-272(2008) [25] Sussman, M. and Puckett, E. G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2), 301-337(2000) [26] Tryggvason, G., Esmaeeli, A., Lu, J. C., and Biswas, S. Direct numerical simulations of gas/liquid multiphase flows. Fluid Dynamics Research, 38(9), 660-681(2006) [27] Brackbill, J. U., Kothe, D. B., and Zemach, C. A continuum method for modeling surface-tension. Journal of Computational Physics, 100(2), 335-354(1992) [28] Levin, Z. and Hobbs, P. V. Splashing of water drops on solid and wetted surfaces-hydrodynamics and charge separation. Philosophical Transactions of the Royal Society of London Series A-Mathematical and Physical Sciences, 269(1200), 555-585(1971) [29] Zhang, L. V., Brunet, P., Eggers, J., and Deegan, R. D. Wavelength selection in the crown splash. Physics of Fluids, 22(12), 24045(2010) [30] Pasandideh-Fard, M., Chen, P., Mostaghimi, J., and Neumann, A. W. The generalized Laplace equation of capillarity I, thermodynamic and hydrostatic considerations of the fundamental equation for interfaces. Advances in Colloid and Interface Science, 63, 151-177(1996) [31] Roisman, I. V. Inertia dominated drop collisions Ⅱ, an analytical solution of the Navier-Stokes equations for a spreading viscous film. Physics of Fluids, 21(5), 052104(2009) [32] Roisman, I. V., Berberović, E., and Tropea, C. Inertia dominated drop collisions I, on the universal flow in the lamella. Physics of Fluids, 21(5), 052103(2009) |