Applied Mathematics and Mechanics (English Edition) ›› 2018, Vol. 39 ›› Issue (9): 1341-1352.doi: https://doi.org/10.1007/s10483-018-2366-9
M. SHEIKHOLESLAMI
收稿日期:
2018-01-16
修回日期:
2018-03-22
出版日期:
2018-09-01
发布日期:
2018-09-01
通讯作者:
M. SHEIKHOLESLAMI
E-mail:mohsen.sheikholeslami@yahoo.com
M. SHEIKHOLESLAMI
Received:
2018-01-16
Revised:
2018-03-22
Online:
2018-09-01
Published:
2018-09-01
Contact:
M. SHEIKHOLESLAMI
E-mail:mohsen.sheikholeslami@yahoo.com
摘要:
Forced convection heat transfer of ethylene glycol based nanofluid with Fe3O4 inside a porous medium is studied using the electric field. The control volume based finite element method (CVFEM) is selected for numerical simulation. The impact of the radiation parameter (Rd), the supplied voltage (△ψ), the volume fraction of nanofluid (φ), the Darcy number (Da), and the Reynolds number (Re) on nanofluid treatment is demonstrated. Results prove that thermal radiation increases the temperature gradient near the positive electrode. Distortion of isotherms increases with the enhance of the Darcy number and the Coulomb force.
中图分类号:
M. SHEIKHOLESLAMI. Investigation of Coulomb force effects on ethylene glycol based nanofluid laminar flow in a porous enclosure[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(9): 1341-1352.
M. SHEIKHOLESLAMI. Investigation of Coulomb force effects on ethylene glycol based nanofluid laminar flow in a porous enclosure[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(9): 1341-1352.
[1] SHEIKHOLESLAMI, M., GANJI, D. D., ASHORYNEJAD, H. R., and ROKNI, H. B., Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by Adomian decomposition method. Applied Mathematics and Mechanics (English Edition), 33(1), 25-36(2012) https://doi.org/10.1007/s10483-012-1531-7 |
[1] | N. HUMNEKAR, D. SRINIVASACHARYA. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580. |
[2] | L. I. KUZMINA, Y. V. OSIPOV, A. R. PESTEREV. Deep bed filtration model for cake filtration and erosion[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 355-372. |
[3] | C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216. |
[4] | L. ANITHA, B. J. GIREESHA. Convective flow of Jeffrey nanofluid along an upright microchannel with Hall current and Buongiorno model: an irreversibility analysis[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1613-1628. |
[5] | B. K. SHARMA, R. GANDHI, T. ABBAS, M. M. BHATTI. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 459-476. |
[6] | S. P. V. ANANTH, B. N. HANUMAGOWDA, S. V. K. VARMA, C. S. K. RAJU, I. KHAN, P. RANA. Thermo-diffusion impact on immiscible flow characteristics of convectively heated vertical two-layered Baffle saturated porous channels in a suspension of nanoparticles: an analytical study[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 307-324. |
[7] | Shuguang LI, M. I. KHAN, F. ALI, S. S. ABDULLAEV, S. SAADAOUI, HABIBULLAH. Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 2005-2018. |
[8] | Qingkai ZHAO, Longbin TAO, Hang XU. Analysis of periodic pulsating nanofluid flow and heat transfer through a parallel-plate channel in the presence of magnetic field[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1957-1972. |
[9] | A. M. ALSHARIF, A. I. ABDELLATEEF, Y. A. ELMABOUD, S. I. ABDELSALAM. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 931-944. |
[10] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[11] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[12] | Weipeng HU, Zhen WANG, Yulu HUAI, Xiqiao FENG, Wenqi SONG, Zichen DENG. Effects of temperature change on the rheological property of modified multiwall carbon nanotubes[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1503-1514. |
[13] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[14] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
[15] | Tiehong ZHAO, M. R. KHAN, Yuming CHU, A. ISSAKHOV, R. ALI, S. KHAN. Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1205-1218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||