[1] SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951-1953(1984) [2] BENDERSKY, L. Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis. Physical Review Letters, 55, 1461-1463(1985) [3] CHATTOPADHYAY, K., RANGANATHAN, S., SUBBANNA, G. N., and THANGARAJ, N. Electron microscopy of quasi-crystals in rapidly solidified Al-14% Mn alloys. Scripta Metallurgica, 19, 767-771(1985) [4] TSAI, A. P., INOUE, A., and MASUMOTO, T. New decagonal Al-Ni-Fe and Al-Ni-Co alloys prepared by liquid quenching. Materials Transactions, JIM, 30, 150-154(1989) [5] BINDI, L., YAO, N., LIN, C., HOLLISTER, L. S., ANDRONICOS, C. L., DISTLER, V. V., EDDY, M. P., KOSTIN, A., KRYACHKO, V., and MACPHERSON, G. J. Natural quasicrystal with decagonal symmetry. Scientific Reports, 5, 9111(2015) [6] AHN, S. J., MOON, P., KIM, T. H., KIM, H. W., SHIN, H. C., KIM, E. H., CHA, H. W., KAHNG, S. J., KIM, P., and KOSHINO, M. Dirac electrons in a dodecagonal graphene quasicrystal. Science, 361, 782-786(2018) [7] LIU, L., LI, Z., LI, Y., and MAO, C. Rational design and self-assembly of two-dimensional, dodecagonal DNA quasicrystals. Journal of the American Chemical Society, 141, 4248-4251(2019) [8] CHEN, J. H., CAI, C., and FU, X. J. Decagonal and dodecagonal quasicrystals obtained by molecular dynamics simulations. Chinese Physics Letters, 36, 036101(2019) [9] DUBOIS, J. M. Properties and applications of quasicrystals and complex metallic alloys. Chemical Society Reviews, 41, 6760-6777(2012) [10] TSAI, A. P. Discovery of stable icosahedral quasicrystal:progress in understanding structure and properties. Chemical Society Reviews, 42, 5352-5365(2013) [11] YADAV, T. P. and MUKHOPADHYAY, N. K. Quasicrystal:a low-frictional novel material. Current Opinion in Chemical Engineering, 19, 163-169(2018) [12] YU, Z., KUCZERA, P., SOLOGUBENKO, A., SUMIGAWA, T., KITAMURA, T., STEURER, W., and SPOLENAK, R. Superior room-temperature ductility of typically brittle quasicrystals at small sizes. Nature Communications, 7, 12261(2016) [13] USTINOV, A. I., MOVCHAN, B. A., and POLISHCHUK, S. S. Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam physical vapour deposition. Scripta Materialia, 50, 533-537(2004) [14] GALANO, M., MARSH, A., AUDEBERT, F., XU, W., and RAMUNDO, M. Nanoquasicrystalline Al-based matrix/γ-Al2O3 nanocomposites. Journal of Alloys and Compounds, 643, S99-S106(2015) [15] PEDRAZZINI, S., GALANO, M., AUDEBERT, F., SIEGKAS, P., GERLACH, R., TAGARIELLI, V. L., and SMITH, G. D. W. High strain rate behaviour of nano-quasicrystalline Al93Fe3Cr2Ti2 alloy and composites. Materials Science and Engineering:A, 764, 138201(2018) [16] WEI, D. X. and HE, Z. B. Multilayered sandwich-like architecture containing large-scale faceted Al-Cu-Fe quasicrystal grains. Materials Characterization, 111, 154-161(2016) [17] YADAV, T. P., WOELLNER, C. F., SHARIFI, T., SINHA, S. K., QU, L. L., APTE, A., MUKHOPADHYAY, N. K., SRIVASTAVA, O. N., VAJTAI, R., GÃLVAO, D. S., TIWARY, C. S., and AJAYAN, P. M. Extraction of two-dimensional aluminum alloys from decagonal quasicrystals. ACS Nano, 14, 7435-7443(2020) [18] LIM, C. W. and WANG, C. M. Exact variational nonlocal stress modeling with asymptotic higherorder strain gradients for nanobeams. Journal of Applied Physics, 101, 054312(2007) [19] LU, L., GUO, X. M., and ZHAO, J. Z. A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Applied Mathematical Modelling, 68, 583-602(2019) [20] LI, X. F., GUO, J. H., and SUN, T. Y. Bending deformation of multilayered one-dimensional quasicrystal nanoplates based on the modified couple stress theory. Acta Mechanica Solida Sinica, 32, 785-802(2019) [21] LIU, J. J., CHEN, L., XIE, F., FAN, X. L., and LI, C. On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory. Smart Structures and Systems, 17, 257-274(2016) [22] LIU, J. J., LI, C., FAN, X. L., and TONG, L. H. Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory. Applied Mathematical Modelling, 45, 65-84(2017) [23] LI, C., LIU, J. J., CHENG, M., and FAN, X. L. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electromechanical forces. Composites Part B:Engineering, 116, 153-169(2017) [24] WAKSMANSKI, N., PAN, E., YANG, L. Z., and GAO, Y. Free vibration of a multilayered onedimensional quasi-crystal plate. Journal of Vibration and Acoustics, 136, 041019(2014) [25] YANG, L. Z., LI, Y., GAO, Y., PAN, E., and WAKSMANSKI, N. Three-dimensional exact electricelastic analysis of a multilayered two-dimensional decagonal quasicrystal plate subjected to patch loading. Composite Structures, 171, 198-216(2017) [26] LI, Y., YANG, L. Z., GAO, Y., and PAN, E. Cylindrical bending analysis of a layered twodimensional piezoelectric quasicrystal nanoplate. Journal of Intelligent Material Systems and Structures, 29, 2660-2676(2018) [27] LI, Y., YANG, L. Z., ZHANG, L. L., and GAO, Y. Three-dimensional exact solution of layered two-dimensional quasicrystal simply supported nanoplates with size-dependent effects. Applied Mathematical Modelling, 87, 42-54(2020) [28] WAKSMANSKI, N. and PAN, E. Nonlocal analytical solutions for multilayered one-dimensional quasicrystal nanoplates. Journal of Vibration and Acoustics, 139, 021006(2017) [29] ZHANG, L., GUO, J. H., and XING, Y. M. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. International Journal of Solids and Structures, 132, 132-133(2018) [30] GUO, J. H., ZHANG, M., CHEN, W. Q., and ZHANG, X. Y. Free and forced vibration of layered one-dimensional quasicrystal nanoplates with modified couple-stress effect. Science China-Physics Mechanics and Astronomy, 63, 274621(2020) [31] GUO, J. H., SUN, T. Y., and PAN, E. Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium. International Journal of Solids and Structures, 185, 272-280(2020) [32] ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer, New York, 82-87(2002) [33] YANG, L. Z., GAO, Y., PAN, E., and WAKSMANSKI, N. An exact solution for a multilayered two-dimensional decagonal quasicrystal plate. International Journal of Solids and Structures, 51, 1737-1749(2014) [34] WU, C. P. and LI, W. C. Asymptotic nonlocal elasticity theory for the buckling analysis of embedded single-layered nanoplates/graphene sheets under biaxial compression. Physica E, 89, 160-169(2017) [35] FAN, T. Y. Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering, 5, 407-448(2013) [36] LEE, J. S. and JIANG, L. Z. Exact electroelastic analysis of piezoelectric laminae via state space approach. International Journal of Solids and Structures, 33, 977-990(1996) [37] SOBHY, M. Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium. Physica E, 56, 400-409(2014) [38] WANG, Q. and WANG, C. M. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology, 18, 075702(2007) [39] ANSARI, R. and ROUHI, H. Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity. Solid State Communications, 152, 56-59(2012) [40] PRADHAN, S. C. and MURMU, T. Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Computational Materials Science, 47, 268-274(2010) [41] CHEN, J. Y., GUO, J. H., and PAN, E. Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect. Journal of Sound and Vibration, 400, 550-563(2017) [42] LI, C., LAI, S. K., and YANG, X. On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter. Applied Mathematical Modelling, 69, 127-141(2019) [43] ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, 4703-4710(1983) [44] LI, Y., YANG, L. Z., ZHANG, L. L., and GAO, Y. Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates. Mechanics of Advanced Materials and Structures, 28, 1216-1226(2021) [45] SARRAMI-FOROUSHANI, S. and AZHARI, M. Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects. Physica E, 57, 83-95(2014) [46] SRINIVAS, S. and RAO, A. K. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. International Journal of Solids and Structures, 6, 1463-1481(1970) |