[1] Senturia, S., Aluru, N., and White, J. Simulating the behavior of MEMS devices:computational methods and needs. IEEE Computational Science and Engineering, 4, 30-43(1997)
[2] Brenner, C. and Li, Y. S. Linear finite element methods for planar linear elasticity. Mathematics of Computation, 59, 321-338(1992)
[3] Senturia, S. D., Harris, R. M., and Johnson, B. P. A computer-aided design system for microelectromechanical systems. Journal of Microelectromechanical Systems, 1, 3-13(1992)
[4] Cai, Z. Q., Korsawe, J., and Starke, G. An adaptive least squares mixed finite element method for the stress displacement formulation of linear elasticity. Numerical Methods for Partial Differential Equations, 21, 132-148(2005)
[5] Chen, L. and Zhang, C. S. A coarsening algorithm on adaptive grids by newest vertex bisection and its applications. Journal of Computational Mathematics, 28, 767-789(2010)
[6] Chen, Z. C., Wang, J. H., and Wang, W. Z. Adaptive multigrid FEM for stress concentration. Journal of Tongji University, 22, 203-208(1994)
[7] Liang, L. and Lin, Y. M. Adaptive mesh refinement of finite element method and its application. Engineering Mechanics, 12, 109-118(1995)
[8] Wang, J. H. Adaptive refinement and multigrid solution for linear finite element method. Journal of Hohai University, 22, 16-22(1994)
[9] Wang, J. H., Yin, Z. Z., and Zhao, W. B. Implementation of the mesh generator for adaptive multigrid finite element method. Computational Structural Mechanics and Applications, 12, 86-92(1995)
[10] Whiler, T. P. Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problem. Mathematics of Computation, 75, 1087-1102(2006)
[11] Carstensen, C., Dolzmann, G., Funken, S. A., and Helm, D. S. Locking-free adaptive mixed finite element methods in linear elasticity. Computational Methods in Applied Mathematics, 190, 1701-1718(2001)
[12] Lonsing, M. and Verfürth, R. A posteriori error estimators for mixed finite element methods in linear elasticity. Journal of Numerical Mathematics, 97, 757-778(2004)
[13] Verfürth, R. A review of a posteriori error estimation techniques for elasticity problem. Compu-tational Methods in Applied Mathematics, 176, 419-440(1999)
[14] Carstemsen, C. Convergence of adaptive finite element methods in computations mechanics. Ap-plied Mathematics and Computation, 59, 2119-2130(2009)
[15] Cascon, J. M., Kreuzer, C., Nochetto, R. H., and Siebert, K. G. Quasi-optimal convergence rate for an adaptive finite element method. SIAM Journal of Numerical Analysis, 46, 2524-2550(2008)
[16] Liu, C. M., Xiao, Y. X., Shu, S., and Zhong, L. Q. Adaptive finite element menthod and local multigrid method for elasticity problems. Engineering Mechanics, 29, 60-67(2012)
[17] Liu, C. M., Zhong, L. Q., Shu, S., and Xiao, Y. X. Convergence of an adaptive finite element method for 2D elasticity problems (in Chinese). Applied Mathmatics and Mechanics, 35, 969-978(2014)
[18] Dörfler, W. A convergent adaptive algorithm for Poisson's equation. SIAM Journal of Numerical Analysis, 33, 1106-1124(1996)
[19] Chen, L., Nochetto, R. H., and Xu, J. C. A computer-aided design system for micro electromechanical systems. Journal of Numerical Mathematics, 120, 1-34(2012)
[20] Bänsch, E. Local mesh refinement in 2 and 3 dimensions. IMPACT of Computing in Science and Engineering, 3, 181-191(1991)
[21] Binev, P., Dahmen, W., and DeVore, R. Adaptive finite element methods with convergence rates. Journal of Numerical Mathematics, 97, 219-268(2004)
[22] Stevenson, R. The completion of locally refined simplicial partitions created by bisection. Mathe-matics of Computation, 77, 227-241(2008)
[23] Stevenson, R. Optimality of a standard adaptive finite element method. Foundations of Compu-tational Mathematics, 7, 245-269(2007) |