[1] Hiemenz, K. Die Grenzschicht an einem in den gleichförmigen Flüessigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnisches Journal, 321, 321-410 (1911)
[2] Sakiadis, B. C. Boundary layer behavior on continuous solid flat surfaces. Journal of AICHE, 7, 26-28 (1961)
[3] Crane, L. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 21, 645-647 (1970)
[4] Chiam, T. C. Stagnation-point flow towards a stretching plate. Journal of the Physical Society of Japan, 63, 2443-2444 (1994)
[5] Wang, C. Y. Free convection on a vertical stretching surface. Journal of Applied Mathematics and Mechanics (ZAMM), 69, 418-420 (1989)
[6] Nazar, R., Amin, N., Filip, D., and Pop, I. Unsteady boundary layer flow in the region of the stagnation-point on a stretching sheet. International Journal of Engineering Science, 42, 1241- 1253 (2004)
[7] Ishak, A., Nazar, R., and Pop, I. Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet. Magnetohydrodynamic, 42, 17-30 (2006)
[8] Sadeghy, K., Hajibeygib, H., and Taghavia, S. M. Stagnation-point flow of upper-convected Maxwell fluids. International Journal of Non-Linear Mechanics, 41, 1242-1247 (2006)
[9] Attia, H. A. Axisymmetric stagnation point flow towards a stretching surface in the presence of a uniform magnetic field with heat generation. Tamkang Journal of Science and Engineering, 1, 11-16 (2007)
[10] Kumari, M. and Nath, G. Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field. International Journal of Non-Linear Mechanics, 44, 1048- 1055 (2009)
[11] Klemp, J. B. and Acrivos, A. A moving-wall boundary layer with reverse flow. Journal of Fluid Mechanics, 76, 363-381 (1976)
[12] Riley, N. and Weidman, P. D. Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary. SIAM Journal on Applied Mathematics, 49, 1350-1358 (1989)
[13] Ingham, D. B. Singular and non-unique solutions of the boundary-layer equations for the flow due to free convection near a continuously moving vertical plate. Zeitschrift für Angewandte Mathe- matik und Physik (ZAMP), 37, 559-572 (1986)
[14] Ridha, A. and Curie, M. Aiding flows non-unique similarity solutions of mixed-convection boundary-layer equations. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 47, 341- 352 (1996)
[15] Mahapatra, T. R., Nandy, S. K., Vajravelu, K., and van Gorder, R. A. Stability analysis of the dual solutions for stagnation-point flow over a non-linearly stretching surface. Meccanica, 47, 1623-1632 (2012)
[16] Makinde, O. D., Khan, W. A., and Khan, Z. H. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Interna- tional Journal of Heat and Mass Transfer, 62, 526-533 (2013)
[17] Akbar, N. S., Nadeem, S., and Lee, C. Peristaltic flow of a Prandtl fluid model in an asymmetric channel. International Journal of Physical Sciences, 7, 687-695 (2012)
[18] Haverkort, J. W. and Peeters, T. W. J. Magnetohydrodynamics of insulating spheres. Magneto- hydrodynamics, 45, 111-126 (2009)
[19] Haverkort, J. W. and Peeters, T. W. J. Magnetohydrodynamic effects on insulating bubbles and inclusions in the continuous casting of steel. Metallurgical and Materials Transactions B, 41, 1240-1246 (2010)
[20] Lok, Y. Y., Amin, N., and Pop, I. Non-orthogonal stagnation point towards a stretching sheet. International Journal of Non-Linear Mechanics, 41, 622-627 (2006)
[21] Wang, C. Y. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43(5), 377-382 (2008)
[22] Mahapatra, T. R. and Nandy, S. K. Stability of dual solutions in stagnation-point flow and heat transfer over a porous shrinking sheet with thermal radiation. Meccanica, 48, 23-32 (2013)
[23] Merkin, J. H. On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering Mathematics, 20, 171-179 (1985)
[24] Weidman, P. D., Kubitschek, D. G., and Davis, A. M. J. The effect of transpiration on selfsimilar boundary layer flow over moving surfaces. International Journal of Engineering Science, 44, 730-737 (2006)
[25] Paullet, J. and Weidman, P. Analysis of stagnation point flow towards a stretching sheet. Inter- national Journal of Non-Linear Mechanics, 42(9), 1084-1091 (2007)
[26] Harris, S. D., Ingham, D. B., and Pop, I.Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media, 77, 267-285 (2009) |