[1] Cai, S. Q. and Suo, Z. G. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. Journal of the Mechanics and Physics of Solids, 59, 2259-2278(2011)
[2] During, C. J. and Morman, K. N. Nonlinear swelling of polymer gels. Journal of Chemical Physics, 98, 4275-4293(1993)
[3] Flory, P. J. and Rehner, J. Statistical mechanics of cross-linked polymer networks swelling. Journal of Chemical Physics, 11, 521-526(1943)
[4] Huang, T., Xu, H. G., Jiao, K. X., Zhu, L. P., Brown, H. R., and Wang, H. L. A novel hydrogel with high mechanical strength:a macromolecular microsphere composite hydrogel. Advanced Materials, 19, 1622-1626(2007)
[5] Kang, M. K. and Huang, R. Swell-induced surface instability of confined hydrogel layers on substrates. Journal of the Mechanics and Physics of Solids, 58, 1582-1598(2010)
[6] Sun, S. and Mak, A. F. T. The dynamical response of a hydrogel fiber to electrochemical stimulation. Journal of Applied Physics Science, 39, 236-246(2000)
[7] Cai, S. Q., Lou, Y. C., Partha, G., Agathe, R., and Suo, Z. G. Force generated by a swelling elastomer subject to constraint. Journal of the Mechanics and Physics of Solids, 107, 103535(2010)
[8] Hong, W., Zhao, X. H., and Suo, Z. G. Drying-induced bifurcation in a hydrogel-actuated nanostructures. Journal of Applied Physics, 104, 084905(2008)
[9] Hong, W., Zhao, X. H., and Suo, Z. G. Large deformation and electrochemistry of polyelectrolyte gels. Journal of the Mechanics and Physics of Solids, 58, 558-577(2010)
[10] Hong, W., Zhao, X. H., Zhou, J. X., and Suo, Z. G. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 56, 1779-1793(2008)
[11] Hong, W., Liu, Z. S., and Suo, Z. G. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solid and Structures, 46, 3282-3289(2009)
[12] Huang, Y. Z., Hong, W., and Suo, Z. G. Nonlinear analysis of wrinkles in a film bonded to a compliant substrate. Journal of the Mechanics and Physics, 53, 2101-2118(2005)
[13] Liu, Z. S., Hong, W., Suo, Z. G., Swaddiwudhipong, S., and Zhang, Y. W. Modeling and simulation of buckling of polymeric membrane thin film gel. Computational Materials Science, 49, 60-64(2010)
[14] Liu, Z. S., Swaddiwudhipong, S., Cui, F. S., Hong, W., Suo, Z. G., and Zhang, Y. W. Analytical solutions of polymeric gel structures under buckling and wrinkle. International Journal of Applied Mechanics, 2, 235-257(2011)
[15] Li, H. Smart Hydrogel Modeling, Springer Verlag, Berlin (2009)
[16] Yao, X. M. and Zhang, H. Kinetic model for the large deformation of cylindrical gels. Journal of Theoretical and Computational Chemistry, 13(4), 1450032(2014)
[17] Zhang, J. P., Zhao, X. H., Suo, Z. G., and Jiang, H. Q. A finite element method for transient analysis of concurrent large deformation and mass transport in gels. Journal of Applied Physics, 105, 093522(2009)
[18] Zhao, X. H., Wei, H., and Suo, Z. G. Inhomogeneous and anisotropic equilibrium state of a swollen hydrogel containing a hard core. Applied Physics Letters, 92, 051904(2008)
[19] Zhou, X., Hon, Y. C., Sun, S., and Mak, A. F. T. Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Institute of Physics Publishing, 11, 459-467(2002)
[20] Li, X., Ji, G. H., and Zhang, H. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn-Hilliard equation. Journal of Computational Physics, 283, 81-97(2015)
[21] Yuan, C. H. and Zhang, H. Self-consistent mean field model of hydrogel and its numerical simulation. Journal of Theoretical and Computational Chemistry, 12(6), 1350048(2013)
[22] Chen, R., Ji, G. H., Yang, X. F., and Zhang, H. Decoupled energy stable schemes for phase-field vesicle membrane model. Journal of Computational Physics, 302, 509-523(2015)
[23] Zhai, D. and Zhang, H. Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel. Soft Matter, 9, 820-825(2013)
[24] Mooney, M. A theory of large elastic deformation. Journal of Applied Physics, 11, 582-592(1940)
[25] Rivlin, R. S. Large elastic deformations of isotropic materials, IV, further developments of the general theory. Philosophical Transactions of the Royal Society of London A, 241, 379-397(1948)
[26] Miquelard-Garnier, G., Hourdet, D., and Creton, C. Large stain behaviour of nanostructured polyelectrolyte hydrogels. Polymer, 50, 481-490(2009)
[27] Webber, R. E. and Creton, C. Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules, 40, 2919-2927(2007) |