[1] Wichterle, O. and Lim, D. Hydrophilic gels for biological use. nature, 185(4706), 117-118(1960)
[2] Peppas, N. A., Bures, P., Leobandung, W., and Ichikawa, H. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27-46(2000)
[3] Luo, Y. and Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Materials, 3(4), 249-254(2004)
[4] Beebe, D. J., Moore, J. S., Bauer, J. M., Yu, Q., Liu, R. H., Devadoss, C., and Jo, B. H. Functional hydrogel structures for autonomous flow control inside microfluidic channels. nature, 404(6778), 588-590(2000)
[5] Dong, L., Agarwal, A. K., Beebe, D. J., and Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. nature, 442(7102), 551-554(2006)
[6] Gibbs, J. W. and Bumstead, H. A. The Scientific Papers of J. Willard Gibbs, Longmans, London, 184-184(1906)
[7] Biot, M. A. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155-164(1941)
[8] Flory, P. J. and Rehner, J. Statistical mechanics of cross-linked polymer networks Ⅱ:swelling. The Journal of Chemical Physics, 11(11), 521-526(1943)
[9] Baek, S. and Pence, T. Inhomogeneous deformation of elastomer gels in equilibrium under saturated and unsaturated conditions. Journal of the Mechanics and Physics of Solids, 59(3), 561-582(2011)
[10] Hong, W., Zhao, X., Zhou, J., and Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 56(5), 1779-1793(2008)
[11] Zhang, H. Strain-stress relation in macromolecular microsphere composite hydrogel. Applied Mathematics and Mechanics (English Edition), 37(11), 1539-1550(2016) https://doi.org/10.1007/s10483-016-2110-9
[12] Cai, S. and Suo, Z. Mechanics and chemical thermodynamics of phase transition in temperaturesensitive hydrogels. Journal of the Mechanics and Physics of Solids, 59(11), 2259-2278(2011)
[13] Hong, W., Liu, Z., and Suo, Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures, 46(17), 3282-3289(2009)
[14] Hong, W., Zhao, X., and Suo, Z. Large deformation and electrochemistry of polyelectrolyte gels. Journal of the Mechanics and Physics of Solids, 58(4), 558-577(2010)
[15] Liu, Z. S., Swaddiwudhipong, S., Cui, F. S., Hong, W., Suo, Z., and Zhang, Y. W. Analytical solutions of polymeric gel structures under buckling and wrinkle. International Journal of Applied Mechanics, 3(2), 235-257(2012)
[16] Wineman, A. and Rajagopal, K. R. Shear induced redistribution of fluid within a uniformly swollen nonlinear elastic cylinder. International Journal of Engineering Science, 30(11), 1583-1595(1992)
[17] Chester, S. A. and Anand, L. A coupled theory of fluid permeation and large deformations for elastomeric materials. Journal of the Mechanics and Physics of Solids, 58(11), 1879-1906(2010)
[18] Mergell, B. and Everaers, R. Tube models for rubber-elastic systems. Macromolecules, 34(16), 5675-5686(2001)
[19] Flory, P. J. Theory of elasticity of polymer networks-effect of local constraints on junctions. Journal of Chemical Physics, 66(12), 5720-5729(1977)
[20] Ronca, G. and Allegra, G. Approach to rubber elasticity with internal constraints. Journal of Chemical Physics, 63(11), 4990-4997(1975)
[21] Edwards, S. F. Theory of rubber elasticity. British Polymer Journal, 9(2), 140-143(1977)
[22] Kloczkowski, A., Mark, J. E., and Erman, B. A diffused-constraint theory for the elasticity of amorphous polymer networks I:fundamentals and stress-strain isotherms in elongation. Macromolecules, 28(14), 5089-5096(1995)
[23] Edwards, S. and Vilgis, T. The effect of entanglements in rubber elasticity. Polymer, 27(4), 483-492(1986)
[24] Higgs, P. G. and Gaylord, R. J. Slip-links, hoops and tubes:tests of entanglement models of rubber elasticity. Polymer, 31(1), 70-74(1990)
[25] Urayama, K. Network topology-mechanical properties relationships of model elastomers. Polymer Journal, 40(8), 669-678(2008)
[26] Meissner, B. and Matejka, L. Comparison of recent rubber-elasticity theories with biaxial stressstrain data:the slip-link theory of Edwards and Vilgis. Polymer, 43(13), 3803-3809(2002)
[27] Yan, H. X. and Jin, B. Influence of microstructural parameters on mechanical behavior of polymer gels. International Journal of Solids and Structures, 49(3), 436-444(2012)
[28] Yan, H. X. and Jin, B. Influence of environmental solution pH and microstructural parameters on mechanical behavior of amphoteric pH-sensitive hydrogels. European Physical Journal E, 35(5), 36-46(2012)
[29] Yan, H. X. and Jin, B. Equilibrium swelling of a polyampholytic pH-sensitive hydrogel. European Physical Journal E, 36(3), 27-33(2013)
[30] Yan, H. X., Jin, B., Gao, S. H., and Chen, L. W. Equilibrium swelling and electrochemistry of polyampholytic pH-sensitive hydrogel. International Journal of Solids and Structures, 51(23/24), 4149-4156(2014)
[31] Chester, S. A., Di Leo, C. V., and Anand, L. A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels. International Journal of Solids and Structures, 52, 1-18(2015)
[32] Flory, P. J. Thermodynamics of high polymer solutions. The Journal of Chemical Physics, 10(1), 51-61(1942)
[33] Huggins, M. L. Solutions of long chain compounds. The Journal of Chemical Physics, 9(5), 440-440(1941)
[34] Zienkiewicz, O. C., Taylor, R. L., and Fox, D. The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann Elsevier Ltd., Oxford, 17-19(2014)
[35] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. The Finite Element Method:Its Basis and Fundamentals, Butterworth-Heinemann Elsevier Ltd., Oxford, 64-66(2013)
[36] Yoon, J., Cai, S., Suo, Z., and Hayward, R. C. Poroelastic swelling kinetics of thin hydrogel layers:comparison of theory and experiment. Soft Matter, 6(23), 6004-6012(2010)
[37] Bouklas, N. and Huang, R. Swelling kinetics of polymer gels:comparison of linear and nonlinear theories. Soft Matter, 8(31), 8194-8203(2012)
[38] Achilleos, E. C., Prud'homme, R. K., Christodoulou, K. N., Gee, K. R., and Kevrekidis, I. G. Dynamic deformation visualization in swelling of polymer gels. Chemical Engineering Science, 55(17), 3335-3340(2000) |