[1] Hutchison, J. W. and He, M. Y. Buckling of cylindrical sandwich shells with metal foam cores. International Journal of Solids and Structures, 37, 6777-6794(2000)
[2] Ferreira, A. J. M., Barbosa, J. T., Marques, A. T., and de Sá, J. C. Nonlinear analysis of sandwich shells:the effect of core plasticity. Computers and Structures, 76, 337-346(2000)
[3] Wang, C. M. Vibration frequencies of simply supported polygonal sandwich plates via Kirchhoff solutions. Journal of Sound and Vibration, 190, 255-260(1996)
[4] Wang, C. M., Ang, K. K., and Yan, L. Free vibration of skew sandwich plates with laminated facings. Journal of Sound and Vibration, 235, 317-340(2000)
[5] Pilipchuk, V. N., Berdichevsky, V. L., and Ibrahim, R. A. Thermo-mechanical coupling in cylindrical bending of sandwich plates. Composite Structures, 92, 2632-2640(2010)
[6] Zenkour, A. M. A comprehensive analysis of functionally graded sandwich plates:part 1, deflection and stresses. International Journal of Solids and Structures, 42, 5224-5242(2005)
[7] Zenkour, A. M. A comprehensive analysis of functionally graded sandwich plates:part 2, buckling and free vibration. International Journal of Solids and Structures, 42, 5243-5258(2005)
[8] Zenkour, A. M. and Sobhy, M. Thermal buckling of various types of FGM sandwich plates. Composite Structures, 93, 93-102(2010)
[9] Shen, H. S. and Li, S. R. Postbuckling of sandwich plates with FGM face sheets and temperaturedependent properties. Composites:Part B, 39, 332-344(2008)
[10] Xia, X. K. and Shen, H. S. Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment. Journal of Sound and Vibration, 314, 254-274(2008)
[11] Wang, Z. X. and Shen, H. S. Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations. Composite Structures, 93, 2521-2532(2011)
[12] Wang, Z. X. and Shen, H. S. Nonlinear dynamic response of sandwich plates with FGM face sheets resting on elastic foundations in thermal environments. Ocean Engineering, 57, 99-110(2013)
[13] Shariyat, M. Nonlinear dynamic thermo-mechanical buckling analysis of the imperfect sandwich plates based on a generalized three-dimensional high-order global-local plate theory. Composite Structures, 92, 72-85(2010)
[14] Alipour, M. M. and Shariyat, M. Analytical stress analysis of annular FGM sandwich plates with non-uniform shear and normal tractions, employing a zigzag-elasticity plate theory. Aerospace Science and Technology, 32, 235-259(2014)
[15] Dozio, L. Natural frequencies of sandwich plates with FGM core via variable-kinematic 2-D Ritz models. Composite Structures, 96, 561-568(2013)
[16] Tung, H. V. Thermal and thermo-mechanical post-buckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties. Composite Structures, 131, 1028-1039(2015)
[17] Sofiyev, A. H. and Kuruoglu, N. Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Composites:Part B, 45, 1133-1142(2013)
[18] Sofiyev, A. H. The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure. Composite Structures, 117, 124-134(2014)
[19] Sofiyev, A. H. and Kuruoglu, N. Parametric instability of shear deformable sandwich cylindrical shells containing an FGM core under static and time dependent periodic axial loads. International Journal of Mechanical Sciences, 101/102, 114-123(2015)
[20] Sofiyev, A. H. and Kuruoglu, N. Effect of a functionally graded interlayer on the non-linear stability of conical shells in elastic medium. Composite Structures, 99, 296-308(2013)
[21] Seidi, J., Khalili, S. M. R., and Malekzadeh, K. Temperature-dependent buckling analysis of sandwich truncated conical shells with FG facesheets. Composite Structures, 131, 682-691(2015)
[22] Dey, T. and Ramachandra, L. S. Buckling and postbuckling response of sandwich panels under non-uniform mechanical edge loadings. Composites:Part B, 60, 537-545(2014)
[23] Barush, M. and Singer, J. Effect of eccentricity of stiffeners on the general instability of stiffened cylindrical shells under hydrostatic pressure. Journal of Mechanical Engineering Science, 5, 23-27(1963)
[24] Khalil, M. R., Olson, M. D., and Anderson, D. L. Nonlinear dynamic analysis of stiffened plates. Composite Structures, 29, 929-941(1988)
[25] Shen, P. C. and Dade, C. Dynamic analysis of stiffened plates and shells using spline Gauss collocation method. Composite Structures, 36, 623-629(1990)
[26] Patel, S. N., Datta, P. K., and Sheikh A. H. Buckling and dynamic instability analysis of stiffened shell panels. Thin-Wall Structure, 44, 321-333(2006)
[27] Najafizadeh, M. M. and Heydari, H. R. An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression. International Journal of Mechanical Sciences, 50, 603-612(2008)
[28] Bich, D. H., Dung, D. V., and Nam, V. H. Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels. Composite Structures, 94, 2465-2473(2012)
[29] Dung, D. V. and Hoa, L. K. Semi-analytical approach for analyzing the nonlinear dynamic torsional buckling of stiffened functionally graded material circular cylindrical shells surrounded by an elastic medium. Applied Mathematical Modelling, 39, 6951-6967(2015)
[30] Brush, D. D. and Almroth, B. O. Buckling of Bars, Plates and Shells, McGraw-Hill, New York (1975)
[31] Reddy, J. N. Mechanics of Laminated Composite Plates and Shells:Theory and Analysis, CRC Press, Boca Raton (2004)
[32] Reddy, J. N. A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures, 20, 881-896(1984)
[33] Reddy, J. N. and Chin, C. D. Thermo-elastical analysis of functionally graded cylinders and plates. Journal of Thermal Stress, 21, 593-626(1988)
[34] Shariat, B. A. S. and Eslami, M. R. Buckling of thick functionally graded plates under mechanical and thermal loads. Composite Structures, 78, 433-439(2007) |