[1] LIBOVE, C. and BUTDORF, S. B. A General Small-Deflection Theory for Flat Sandwich Plates, National Advisory Committee for Aeronautics, Washington, D. C. (1948) [2] REISSNER, E. Finite deflections of sandwich plates. Journal of the Aeronautical Sciences, 15, 435-440(1948) [3] PLANTEMA, F. J. Sandwich Construction:the Bending and Buckling of Sandwich Beams, Plates and Shells, John Wiley and Sons, New York (1966) [4] ALLEN, H. G. Analysis and Design of Structural Sandwich Panels, Pergamon Press, Oxford (1969) [5] CARRERA, E. An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates. Composite Structures, 50, 183-198(2000) [6] CARRERA, E. and BRISCHETTO, S. A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Applied Mechanics Reviews, 62, 010803(2009) [7] ZENKOUR, A. M. A simple four-unknown refined theory for bending analysis of functionally graded plates. Applied Mathematical Modelling, 37, 9041-9051(2013) [8] CALIRI, M. F., JR., FERREIRA, A. J. M., and TITA, V. A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method. Composite Structures, 156, 63-77(2016) [9] JASION, P., MAGNUCKA-BLANDZI, E., SZYC, W., and MAGNUCKI, K. Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core. Thin-Walled Structures, 61, 154-161(2012) [10] KEDZIA, P. and SMYCZYNSKI, M. J. Homogeneity of magnetic field influence on buckling of three layer polyethylene plate. Composite Structures, 183, 331-337(2018) [11] MAGNUCKI, K., MALINOWSKI, M., and KASPRZAK, J. Bending and buckling of a rectangular porous plate. Steel and Composite Structures, 6, 319-333(2006) [12] MAGNUCKI, K., JASION, P., SZYC, W., and SMYCZYNSKI, M. J. Strength and buckling of a sandwich beam with thin binding layers between faces and a metal foam core. Steel and Composite Structures, 16, 325-337(2014) |