[1] KILLINGER, R., KUKIES, R., SURAUER, M., TOMASETTO, A., and VAN HOLTZ, L. ARTEMIS orbit raising inflight experience with ion propulsion. Acta Astronautica, 53(4-10), 607-621(2003) [2] BROPHY, J. Advanced ion propulsion systems for affordable deep-space missions. Acta Astronautica, 52(2), 309-316(2000) [3] RAYMAN, M. D., FRASCHETTI, T. C., RAYMOND, C. A., and RUSSEL, C. T. Coupling of system resource margins through the use of electric propulsion:implications in preparing for the Dawn mission to Ceres and Vesta. Acta Astronautica, 60(10-11), 930-938(2007) [4] WANG, J., POLK, J., BROPHY, J., and KATZ, I. Three-dimensional particle simulations of ionoptics plasma flow and grid erosion. Journal of Propulsion and Power, 19(6), 1192-1199(2015) [5] JIAN, H. H., CHU, Y. C., CAO, H. J., CAO, Y., HE, X. M., and XIA, G. Q. Three-dimensional IFE-PIC numerical simulation of background pressure's effect on accelerator grid impingement current for ion optics. Vacuum, 116(8), 130-138(2015) [6] FARNELL, C. C. Performance and lifetime simulation of ion thruster optics. Colorado State School, 20-21, 49-66(2007) [7] POLK, J. E., MOORE, N. R., BROPHY, J. R., NEWLIN, L. E., and EBBELER, D. H. Probabilistic Analysis of Ion Engine Accelerator Grid Life, NASA Technical Report, 20060039386, NASA (1993) [8] DAN, M. G. and KATZ, I. Fundamentals of electric propulsion:ion and hall thrusters. JPL Space Science and Technology Series, John Wiley & Sons, Inc., California, 216-235(2008) [9] MUELLER, J., BROPHY, J. R., BROWN, D. K., and GARNER, C. E. Performance characteristics of 15 cm carbon-carbon composite grids. Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston (1994) [10] MUELLER, J., BROPHY, J., and BROWN, D. Endurance testing and fabrication of advanced 15 cm and 30 cm carbon-carbon composite grids. 31st Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston (2013) [11] MUELLER, J., BROPHY, J. R., and BROWN, D. K. Design, fabrication, and testing of 30 cm dia dished carbon-carbon ion engine grids. 32nd Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston (1996) [12] BEATTY, J., SNYDER, J., and WEI, S. Manufacturing of 57 cm carbon composite ion optics for a 20-kW-class ion engine. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston (2005) [13] CHENG, L. F., ZHANG, L. T., MEI, H., LIU, Y. S., and ZENG, Q. F. Manufacturing of CMCs by chemical vapor infiltration process (in Chinese). Journal of Shanghai University (Natural Science), 20(1), 15-32(2014) [14] FENG, Z. H., FAN, Z., KONG, Q., YU, L. Q., and XU, L. Preparation of high thermal conductivity C/C composite (in Chinese). Journal of Shanghai University (Natural Science), 20(1), 51-58(2014) [15] FANG, J. M., XU, Z. H., ZHANG, Z. W., LI, A. J., and TANG, Z. P. Multi-scale relationship of pores in carbon cloth stitched preform and deposition of pyrocarbon. Aerospace Materials and Technology, 45(5), 36-39(2015) [16] ZHANG, D., AROLA, D., CHARALAMBIDES, P. G., and PATTERSON, M. C. L. On the mechanical behavior of carbon-carbon optic grids determined using a bi-axial optical extensometer. Journal of Materials Science, 39(14), 4495-4505(2004) [17] YAN, X., XU, X. W., and ZHANG, C. Analysis of elastic properties of 2D triaxial braided composites. Chinese Journal of Solid Mechanics, 34(2), 140-151(2013) [18] YANG, M., SUN, J. L., REN, M. S., LI, H., and BAI, R. C. Nanohardness and elastic modulus of pyrocarbon. Journal of Shanghai University (Natural Science), 14(5), 541-545(2008) [19] TSAI, K. H., HWAN, C. L., CHEN, W. L., and CHIU, C. H. A parallelogram spring model for predicting the effective elastic properties of 2D braided composites. Composite Structures, 83(3), 273-283(2008) [20] MA, H., XIA, L. W., and QIN, Q. H. Computational model for short-fiber composite with eigenstrain formulation of boundary integral equations. Applied Mathematics and Mechanics (English Edition), 29(6), 757-767(2008) https://doi.org/10.1007/s10483-008-0607-4 [21] EBRAHIMI, F. and BARATI, M. R. Dynamic modeling of preloaded size-dependent nanocrystalline nano-structures. Applied Mathematics and Mechanics (English Edition), 38(12), 1753-1772(2017) https://doi.org/10.1007/s10483-017-2291-8 [22] KITAMURA, S., HAYAKAWA, Y., KASAI, Y., and QZAKI, T. Fabrication of Carbon-Carbon Composite Ion Thruster Grids Improvement of Structural Strength, IEPC 97-093(1997) [23] YANG, W., GAO, Q., and LU, F. L. Implementation of buffer design for equipments on aircraft. Structure and Environment Engineering, 41(1), 37-44(2014) [24] MANABE, T., KONDO, H., and KISHI, H. Rubber reinforcing cord and fiber reinforced rubber material:US, US6835447(2004) [25] ALY-HASSAN, M. S., HATTA, H., WAKAYAMA, S., WATANABE, M., and MIYAGAWA, K. Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance. Carbon, 41(5), 1069-1078(2003) [26] LU, Z. X., HUANG, J. X., and YUAN, Z. S. Effects of microstructure on uniaxial strength asymmetry of open-cell foams. Applied Mathematics and Mechanics (English Edition), 36(1), 37-46(2015) https://doi.org/10.1007/s10483-015-1893-9 [27] HATTA, H., GOTO, K., and IKEGAKI, S. Tensile strength and fiber/matrix interfacial properties of 2D- and 3D-carbon/carbon composites. Journal of the European Ceramic Society, 25(4), 535-542(2005) |