[1] SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53(20), 1951-1953(1984) [2] DUBOIS, J. M., KANG, S. S., and STEBUT, J. V. Quasicrystalline low-friction coatings. Journal of Materials Science Letters, 10(9), 537-541(1991) [3] DUBOIS, J. M., BRUNET, P., COSTIN, W., and MERSTALLINGER, A. Friction and fretting on quasicrystals under vacuum. Journal of Non-Crystalline Solids, 334, 475-480(2004) [4] DING, D. H., YANG, W. G., HU, C. Z., and WANG, R. H. Generalized elasticity theory of quasicrystals. Physical Review B, 48(10), 7003-7009(1993) [5] YANG, W. G., WANG, R. H., DING, D. H., and HU, C. Z. Linear elasticity theory of cubic quasicrystals. Physical Review B, 48(10), 6999-7002(1993) [6] HU, C. Z., WANG, R. H., YANG, W. G., and DING, D. H. Point groups and elastic properties of two-dimensional quasicrystals. Acta Crystallographica, A52, 251-256(1996) [7] HU, C. Z., WANG, R. H., and DING, D. H. Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Reports on Progress in Physics, 63, 1-39(2000) [8] FAN, T. Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications, Science Press, Beijing (2011) [9] LI, X. F. and FAN, T. Y. A straight dislocation in one-dimensional hexagonal quasicrystals. Physica Status Solidi, 212(1), 19-26(1999) [10] FAN, T. Y., LI, X. F., and SUN, Y. F. A moving screw dislocation in a one-dimensional hexagonal quasicrystal. Acta Physica Sinica (Overseas Edition), 8(4), 288-295(1999) [11] LI, X. Y. Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. International Journal of Solids and Structures, 51(6), 1442-1455(2014) [12] YANG, J., LI, X., and DING, S. H. Anti-plane analysis of a circular hole with three unequal cracks in one-dimensional hexagonal piezoelectric quasicrystals Chinese Journal of Engineering Mathematics, 33(2), 185-198(2016) [13] SHI, W. C. Collinear periodic cracks and/or rigid line inclusions of antiplane sliding mode in one-dimensional hexagonal quasicrystal. Applied Mathematics and Computation, 215, 1062-1067(2009) [14] GAO, Y. and RICOEUR, A. Three-dimensional analysis of a spheroidal inclusion in a twodimensional quasicrystal body. Philosophical Magazine, 92(34), 4334-4353(2012) [15] WANG, X. and SCHIAVONE, P. Decagonal quasicrystalline elliptical inclusions under thermomechanical loadings. Acta Mechanica Solida Sinica, 27(5), 518-530(2014) [16] GUO, J. H., ZHANG, Z. Y., and XING, Y. M. Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Philosophical Magazine, 96(4), 349-369(2016) [17] GUO, J. H. and PAN, E. Three-phase cylinder model of one-dimensional hexagonal piezoelectric quasi-crystal composites. Journal of Applied Mechanics, 83(8), 081007(2016) [18] WANG, Y. B. and GUO, J. H. Effective electroelastic constants for three-phase confocal elliptical cylinder model in piezoelectric quasicrystal composites. Applied Mathematics and Mechanics (English Edition), 39(6), 797-812(2018) https://doi.org/10.1007/s10483-018-2336-9 [19] ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, 241(1226), 376-396(1957) [20] MORI, T. and TANAKA, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5), 571-574(1973) [21] BENVENISTE, Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of Materials, 6(2), 147-157(1987) [22] FAN, T. Y. Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering, 5(4), 407-448(2013) [23] SLADEK, J., SLADEK, V., and PAN, E. Bending analysis of 1D orthorhombic quasicrystal plates. International Journal of Solids and Structures, 50(24), 3975-3983(2013) [24] LOTHE, J. and BARNETT, D. M. Integral formalism for surface waves in piezoelectric crystals:existence considerations. The Journal of Applied Physics, 47, 1799-1807(1976) [25] DEEG, W. F. The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids, Ph. D. dissertation, Stanford University, Stanford (1980) [26] MURA, T. Micromechanics of Defects in Solids, 2nd ed., Martinus Nijhoff Publishers, Amsterdam (1987) [27] DUNN, M. L. and TAYA, M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. International Journal of Solids and Structures, 30(2), 161-175(1993) [28] DUNN, M. L. and TAYA, M. Electromechanical properties of porous piezoelectric ceramics. Journal of the American Ceramic Society, 76(7), 1697-1706(1993) [29] AGUIAR, A. R., BRAVO-CASTILLERO, J., and SILVA, U. P. D. Application of Mori-Tanaka method in 3-1 porous piezoelectric medium of crystal class 6. International Journal of Engineering Science, 123, 36-50(2018) |