Applied Mathematics and Mechanics (English Edition) ›› 2021, Vol. 42 ›› Issue (12): 1685-1702.doi: https://doi.org/10.1007/s10483-021-2793-6
• Articles • Next Articles
Siyu WANG1, Lin ZHAN1, Huifeng XI1, O. T. BRUHNS2, Heng XIAO1
Received:
2021-08-08
Revised:
2021-09-20
Online:
2021-12-01
Published:
2021-11-23
Contact:
O.T.BRUHNS ,E-mail:otto.bruhns@rub.de;Heng XIAO ,E-mail:xiaoheng@shu.edu.cn
Supported by:
2010 MSC Number:
Siyu WANG, Lin ZHAN, Huifeng XI, O. T. BRUHNS, Heng XIAO. Unified simulation of hardening and softening effects for metals up to failure. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1685-1702.
[1] XIAO, H. Thermo-coupled elastoplasticity models with asymptotic loss of the material strength. International Journal of Plasticity, 63, 211-228(2014) [2] WANG, Z. L., LI, H., YIN, Z. N., and XIAO, H. A new, direct approach toward modeling thermocoupled fatigue failure behavior of metals and alloys. Acta Mechanica Solida Sinica, 30, 1-9(2017) [3] WANG, Z. L. and XIAO, H. Direct modeling of multi-axial fatigue failure for metals. International Journal of Solids and Structures, 125, 216-231(2017) [4] VOCE, E. The relationship between stress and strain for homogeneous deformation. Journal of the Institute of Metals, 74, 537-562(1948) [5] SWIFT, H. W. Plastic instability under plane stress. Journal of the Mechanics and Physics of Solids, 1, 1-18(1952) [6] WHITEMAN, I. R. A mathematical model depicting the stress-strain diagram and the hysteresis loop. ASME Journal of Applied Mechanics, 81, 95-102(1959) [7] LUDWIGSON, D. C. Modified stress-strain relation for FCC metals and alloys. Metallurgical Transactions, 2, 2825-2828(1971) [8] HARTLEY, C. S. and SRINIVASAN, R. Constitutive equations for large plastic deformation of metals. Journal of Engineering Materials and Technology, 105, 162-169(1983) [9] JOHNSON, G. R. and COOK, W. H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Engineering Fracture Mechanics, 21, 541-548(1983) [10] BARAGER, D. L. The high temperature and high strain-rate behaviour of a plain carbon and an HSLA steel. Journal of Mechanical Working Technology, 14, 296-307(1987) [11] ZERILLI, F. J. and ARMSTRONG, R. W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. Journal of Applied Physics, 68, 1580-1591(1990) [12] SUNG, J. H., KIM, J. H., and WAGONER, R. H. A plastic constitutive equation incorporating strain, strain-rate, and temperature. International Journal of Plasticity, 26, 1746-1771(2010) [13] CHABOCHE, J. L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 24, 1642-1693(2008) [14] BRUHNS, O. T. The Prandtl-Reuss equations revisited. Zeitschrift für Angewandte Mathematik und Mechanik, 94, 187-202(2014) [15] SHAW, J. A. and KYRIAKIDES, S. Initiation and propagation of localized deformation in elastoplastic strips under uniaxial tension. International Journal of Plasticity, 13, 837-871(1997) [16] KANG, G. Z. A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation. Mechanics of Materials, 36, 299-312(2004) [17] ZHAO, W. J., YANG, S. P., WEN, G. L., and REN, X. H. Fractional-order visco-plastic constitutive model for uniaxial ratcheting behaviors. Applied Mathematics and Mechanics (English Edition), 41(1), 49-62(2019) https://doi.org/10.1007/s10483-019-2413-8 [18] PAREDES, M. and WIERZBICKI, T. On mechanical response of Zircaloy-4 under a wider range of stress states:from uniaxial tension to uniaxial compression. International Journal of Solids and Structures, 206, 198-223(2020) [19] YU, C. Y., KAO, P. W., and CHANG, C. P. Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Materialia, 53, 4019-4028(2005) [20] SEGAL, V. M., FERRASSE, S., and ALFORD, F. Tensile testing of ultra fine grained metals. Materials Science and Engineering:A, 422(3), 321-326(2006) [21] HUANG, C. X., WU, S. D., LI, S. X., and ZHANG, Z. F. Strain hardening behavior of ultrafinegrained Cu by analyzing the tensile stress-strain curve. Advanced Engineering Materials, 10, 434-439(2010) [22] LIN, P., HE, Z. B., YUAN, S. J., and SHEN, J. Tensile deformation behavior of Ti-22Al-25Nb alloy at elevated temperatures. Materials Science and Engineering:A, 556, 617-624(2012) [23] WANG, X. S., HU, W. L., HUANG, S. J., and DING, R. Experimental investigations on extruded 6063 aluminium alloy tubes under complex tension-compression stress states. International Journal of Solids and Structures, 168, 123-137(2019) [24] LEHMANN, T. Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elasto-plastische Formänderungen. Ingenieur-Archiv, 41(4), 297-310(1972) [25] DIENES, J. K. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, 32, 217-232(1979) [26] NAGTEGAAL, J. C. and DE JONG, J. E. Some aspects of non-isotropic work-hardening in finite strain plasticity. Plasticity of Metals at Finite Strain, Theory, Computation and Experiment (eds., LEE, E. H. and MALLETT, R. L.), Stanford University Press, Stanford, 65-102(1982) [27] ATLURI, S. N. On constitutive relations at finite strain:hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Computer Methods in Applied Mechanics and Engineering, 43, 137-171(1984) [28] REED, K. W. and ATLURI, S. N. Constitutive modeling and computational implementation for finite strain plasticity. International Journal of Plasticity, 1, 63-87(1985) [29] BRUHNS, O. T., XIAO, H., and MEYERS, A. Large simple shear and torsion problems in kinematic hardening elastoplasticity with logarithmic rate. International Journal of Solids and Structures, 38, 8701-8722(2001) [30] BRUHNS, O. T., XIAO, H., and MEYERS, A. Large-strain response of isotropic-hardening elastoplasticity with logarithmic rate:swift effect in torsion. Archive of Applied Mechanics, 71, 389-404(2001) [31] BAKHSHIANI, A., MOFID, M., KHOEI, A. R., and MCCABE, S. L. Finite strain simulation of thin-walled tube under torsion using endochronic theory of plasticity. Thin-Walled Structures, 41, 435-459(2003) [32] COLAK, O. U. Modeling of large simple shear using a viscoplastic overstress model and classical plasticity model with different objective stress rates. Acta Mechanica, 167, 171-187(2004) [33] XIAO, H., BRUHNS, O. T., and MEYERS, A. Objective stress rates, cyclic deformation paths, and residual stress accumulation. Zeitschrift für Angewandte Mathematik und Mechanik, 86, 843-855(2006) [34] TRAJKOVIĆ-MILENKOVIĆ, M. and BRUHNS, O. T. Logarithmic rate implementation in constitutive relations of finite elastoplasticity with kinematic hardening. Zeitschrift für Angewandte Mathematik und Mechanik, 98, 1237-1248(2018) [35] XIAO, H. Hencky strain and Hencky model:extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1, 1-51(2005) [36] XIAO, H., BRUHNS, O. T., and MEYERS, A. Elastoplasticity beyond small deformations. Acta Mechanica, 182, 31-111(2006) [37] BRUHNS, O. T. Large deformation plasticity. Acta Mechanica Sinica, 36, 472-492(2020) [38] XIAO, H. Deformable micro-continua in which quantum mysteries reside. Applied Mathematics and Mechanics (English Edition), 41(12), 1805-1830(2019) https://doi.org/10.1007/s10483-019-2546-6 [39] XIAO, H., BRUHNS, O. T., and MEYERS, A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica, 124, 89-105(1997) [40] XIAO, H., BRUHNS, O. T., and MEYERS, A. On objective corotational rates and their defining spin tensors. International Journal of Solids and Structures, 35, 4001-4014(1998) [41] XIAO, H., BRUHNS, O. T., and MEYERS, A. Strain rates and material spins. Journal of Elasticity, 52, 1-41(1998) [42] BRUHNS, O. T., XIAO, H., and MEYERS, A. Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. International Journal of Plasticity, 15, 479-520(1999) [43] BRUHNS, O. T., XIAO, H., and MEYERS, A. Some basic issues in traditional Eulerian formulations of finite elastoplasticity. International Journal of Plasticity, 19, 2007-2026(2003) [44] XIAO, H., BRUHNS, O. T., and MEYERS, A. Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. Journal of the Mechanics and Physics of Solids, 55, 338-365(2007) [45] WANG, S. Y., ZHAN, L., WANG, Z. L., YIN, Z. N., and XIAO, H. A direct approach toward simulating cyclic and non-cyclic fatigue failure of metals. Acta Mechanica, 228, 4325-4330(2017) [46] WANG, Y. S., ZHAN, L., XI, H. F., and XIAO, H. Coupling effects of finite rotation and straininduced anisotropy on monotonic and cyclic failure of metals. Acta Mechanica, 229, 4963-4975(2018) [47] ZHAN, L., WANG, S. Y., XI, H. F., and XIAO, H. Direct simulation of thermo-coupled fatigue failure for metals. Zeitschrift für Angewandte Mathematik und Mechanik, 98, 856-869(2018) [48] ZHAN, L., WANG, S. Y., XI, H. F., and XIAO, H. Innovative elastoplastic J2-flow model incorporating cyclic and non-cyclic failure effects of metals as inherent constitutive features. Zeitschrift für Angewandte Mathematik und Mechanik, 99, e201900023(2019) [49] BRIDGMAN, P. W. Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York (1952) [50] TARDIF, N. and KYRIAKIDES, S. Determination of anisotropy and material hardening for aluminum sheet metal. International Journal of Solids and Structures, 49, 3496-3506(2012) [51] KIM, J. H., SERPANTÉ, A., BARLAT, F., PIERRON, F., and LEE, M. G. Characterization of the post-necking strain hardening behavior using the virtual fields method. International Journal of Solids and Structures, 50, 3829-3842(2013) [52] GERBIG, D., BOWER, A., SAVIC, V., and HECTOR, L. G. Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens. International Journal of Solids and Structures, 97-98, 496-509(2016) [53] DING, X. F., ZHAN, L., XI, H. F., and XIAO, H. A unified simulation for effects of gellan polymer concentrations on large strain elastic behaviors of gellan gels. Multidiscipline Modeling in Materials and Structures, 15, 859-870(2019) [54] WANG, S. Y., ZHAN, L., XI, H. F., and XIAO, H. New finite strain elastoplastic equations for accurately and explicitly simulating pseudoelastic-to-plastic transition effects of SMAs. Applied Mathematics and Mechanics (English Edition), 41(12), 1582-1596(2020) https://doi.org/10.1007/s10483-020-2659-7 [55] ZHAN, L., WANG, X. M., WANG, S. Y., XI, H. F., and XIAO, H. An explicit and accurate approach toward simulating plastic-to-pseudoelastic transitions of SMAs under multiple loading and unloading cycles. International Journal of Solids and Structures, 185-186, 104-115(2020) [56] WANG, S. Y., ZHAN, L., XI, H. F., and XIAO, H. A unified approach toward simulating constant and varying amplitude fatigue failure effects of metals with fast and efficient algorithms. Acta Mechanica Solida Sinica, 34, 53-64(2021) [57] WANG, S. Y., ZHAN, L., BRUHNS, O. T., and XIAO, H. Metal failure effects predicted accurately with a unified and explicit criterion. Zeitschrift für Angewandte Mathematik und Mechanik, 101, e202100140(2021) [58] ZHOU, Q., QIAN, L. H., MENG, J. Y., ZHAO, L. J., and ZHANG, F. C. Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel. Materials and Design, 85, 487-496(2015) [59] OKUBO, S. and FUKUI, K. Complete stress-strain curves, for various rock types in uniaxial tension. International Journal of Rock Mechanics and Mining Sciences and Geomechanics, 33, 549-556(1996) [60] KIM, S. M. and AL-RUB, R. K. A. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement and Concrete Research, 41, 339-358(2011) |
[1] | Jianxun ZHANG, Jinwen BAI. A novel efficient energy absorber with free inversion of a metal foam-filled circular tube [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 1-14. |
[2] | Lei LI, Hanbiao LIU, Jianxin HAN, Wenming ZHANG. Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 777-792. |
[3] | Hai QING. Well-posedness of two-phase local/nonlocal integral polar models for consistent axisymmetric bending of circular microplates [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 637-652. |
[4] | Jianxun ZHANG, Haoyuan GUO. Low-velocity impact of rectangular foam-filled fiber metal laminate tubes [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1733-1742. |
[5] | Yanming REN, Hai QING. On the consistency of two-phase local/nonlocal piezoelectric integral model [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1581-1598. |
[6] | Gao XU, Feng HAO, Jiawang HONG, Daining FANG. Atomic-scale simulations for lithium dendrite growth driven by strain gradient [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(4): 533-542. |
[7] | Siyu WANG, Lin ZHAN, Huifeng XI, Heng XIAO. New finite strain elastoplastic equations for accurately and explicitly simulating pseudoelastic-to-plastic transition effects of shape memory alloys [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(10): 1583-1596. |
[8] | Fengrui LIU, Han YAN, Wenming ZHANG. Nonlinear dynamic analysis of a photonic crystal nanocavity resonator [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(1): 139-152. |
[9] | Yiqiang CHEN, Wenjuan YAO, Shaofeng LIU. Mechanical model of organ of Corti [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(6): 867-876. |
[10] | Haibo WANG, Ruirui LIU, Jialing YANG, Hua LIU, Yuxin SUN. Theoretical model for elliptical tube laterally impacted by two parallel rigid plates [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 227-236. |
[11] | M. GRYGOROWICZ, E. MAGNUCKA-BLANDZI. Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(10): 1361-1374. |
[12] | Ruirui LIU, Haibo WANG, Jialing YANG, Hua LIU, Yuxin SUN. Theoretical analysis on quasi-static lateral compression of elliptical tube between two rigid plates [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1005-1016. |
[13] | F. MOAYYEDIAN;M. KADKHODAYAN. Modified Burzynski criterion with non-associated flow rule for anisotropic asymmetric metals in plane stress problems [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 303-318. |
[14] | Ming ZHEN;Zhi-gang JIANG;Dian-yi SONG;Fei LIU. Analytical solutions for finite cylindrical dynamic cavity expansion in compressible elastic-plastic materials [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(8): 1039-1050. |
[15] | ZHAO Shi-Yang;XUE Pu;PENG Xiong-Qi;WANG Yan. Effective numerical approach with complete damage transfer under multi-step loading [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(3): 391-402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||