Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (4): 633-648.doi: https://doi.org/10.1007/s10483-024-3100-9
• Articles • Previous Articles Next Articles
E. GHAVANLOO1,*(), S. EL-BORGI2
Received:
2023-12-06
Online:
2024-04-01
Published:
2024-04-08
Contact:
E. GHAVANLOO
E-mail:ghavanloo@shirazu.ac.ir
2010 MSC Number:
E. GHAVANLOO, S. EL-BORGI. Nonlinear wave dispersion in monoatomic chains with lumped and distributed masses: discrete and continuum models. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 633-648.
1 | CHOI, C., BANSAL, S., MÜNZENRIEDER, N., and SUBRAMANIAN, S. Fabricating and assembling acoustic metamaterials and phononic crystals. Advanced Engineering Materials, 23 (2), 2000988 (2021) |
2 | GHAVANLOO, E., EL-BORGI, S., and FAZELZADEH, S. A. Formation of quasi-static stop band in a new one-dimensional metamaterial. Archive of Applied Mechanics, 93 (1), 287- 299 (2023) |
3 | LIU, H., YANG, H., LI, J., WEI, L., and CHEN, H. T. Advances in active and tunable electromagnetic metamaterial devices: principles, realizations, and applications. Frontiers of Physics, 16 (3), 33601 (2021) |
4 | CHEN, S., and WU, Y. Recent advances in acoustic and elastic metamaterials. Reports on Progress in Physics, 83 (2), 026001 (2020) |
5 | SMITH, D. R., PENDRY, J. B., and WILTSHIRE, M. C. K. Metamaterials and negative refractive index. Science, 305 (5685), 788- 792 (2004) |
6 | GARDINER, A., DALY, P., DOMINGO-ROCA, R., WINDMILL, J. F. C., FEENEY, A., and JACKSON-CAMARGO, J. C. Additive manufacture of small-scale metamaterial structures for acoustic and ultrasonic applications. Micromachines, 12 (6), 634 (2021) |
7 | MIZUKAMI, K., KAWAGUCHI, T., OGI, K., and KOGA, Y. Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration. Composite Structures, 255, 112949 (2021) |
8 | GÓRA, P., and ŁOPATO, P. Metamaterials' application in sustainable technologies and an introduction to their influence on energy harvesting devices. Applied Sciences, 13 (13), 7742 (2023) |
9 | CHALLAMEL, N., ZHANG, Y. P., WANG, C. M., RUTA, G., and DELL'ISOLA, F. Discrete and continuous models of linear elasticity: history and connections. Continuum Mechanics and Thermodynamics, 35 (2), 347- 391 (2023) |
10 | DEYMIER, P., and RUNGE, K. One-dimensional mass-spring chains supporting elastic waves with non-conventional topology. Crystals, 6 (4), 44 (2016) |
11 | GHAVANLOO, E., FAZELZADEH, S. A., and RAFII-TABAR, H. Formulation of an efficient continuum mechanics-based model to study wave propagation in one-dimensional diatomic lattices. Mechanics Research Communications, 103, 103467 (2020) |
12 | XU, S. F., XU, Z. L., and CHUANG, K. C. Hybrid bandgaps in mass-coupled Bragg atomic chains: generation and switching. Frontiers in Materials, 8, 774612 (2021) |
13 |
ZHAO, P., ZHANG, K., ZHAO, C., and DENG, Z. Multi-resonator coupled metamaterials for broadband vibration suppression. Applied Mathematics and Mechanics (English Edition, 42 (1), 53- 64 (2021)
doi: 10.1007/s10483-021-2684-8 |
14 | GRINBERG, I., and MATLACK, K. H. Nonlinear elastic wave propagation in a phononic material with periodic solid-solid contact interface. Wave Motion, 93, 102466 (2020) |
15 |
HOU, X., DENG, Z., and ZHOU, J. Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and Mechanics (English Edition), 31 (11), 1371- 1382 (2010)
doi: 10.1007/s10483-010-1369-7 |
16 | MANKTELOW, K. L., LEAMY, M. J., and RUZZENE, M. Analysis and experimental estimation of nonlinear dispersion in a periodic string. Journal of Vibration and Acoustics, 136 (3), 031016 (2014) |
17 | PACKO, P., UHL, T., STASZEWSKI, W. J., and LEAMY, M. J. Amplitude-dependent Lamb wave dispersion in nonlinear plates. The Journal of the Acoustical Society of America, 140 (2), 1319- 1331 (2016) |
18 |
ZHAO, Y., HOU, X., ZHANG, K., and DENG, Z. Symplectic analysis for regulating wave propagation in a one-dimensional nonlinear graded metamaterial. Applied Mathematics and Mechanics (English Edition), 44 (5), 745- 758 (2023)
doi: 10.1007/s10483-023-2985-6 |
19 | NARISETTI, R. K., RUZZENE, M., and LEAMY, M. J. Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion, 49 (2), 394- 410 (2012) |
20 | WANG, X., ZHU, W., and LIU, M. Steady-state periodic solutions of the nonlinear wave propagation problem of a one-dimensional lattice using a new methodology with an incremental harmonic balance method that handles time delays. Nonlinear Dynamics, 100, 1457- 1467 (2020) |
21 | CAMPANA, M. A., OUISSE, M., SADOULET-REBOUL, E., RUZZENE, M., NEILD, S., and SCARPA, F. Impact of non-linear resonators in periodic structures using a perturbation approach. Mechanical Systems and Signal Processing, 135, 106408 (2020) |
22 | WEI, L. S., WANG, Y. Z., and WANG, Y. S. Nonreciprocal transmission of nonlinear elastic wave metamaterials by incremental harmonic balance method. International Journal of Mechanical Sciences, 173, 105433 (2020) |
23 | GEORGIEVA, A., KRIECHERBAUER, T., and VENAKIDES, S. Wave propagation and resonance in a one-dimensional nonlinear discrete periodic medium. SIAM Journal on Applied Mathematics, 60 (1), 272- 294 (1999) |
24 | CHAKRABORTY, G., and MALLIK, A. K. Dynamics of a weakly non-linear periodic chain. International Journal of Non-Linear Mechanics, 36 (2), 375- 389 (2001) |
25 | NARISETTI, R. K., LEAMY, M. J., and RUZZENE, M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. Journal of Vibration and Acoustics, 132, 031001 (2010) |
26 | MANKTELOW, K., LEAMY, M. J., and RUZZENE, M. Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dynamics, 63, 193- 203 (2011) |
27 | WANG, Y. Z., LI, F. M., and WANG, Y. S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. International Journal of Mechanical Sciences, 106, 357- 362 (2016) |
28 | WANG, Y. Z., and WANG, Y. S. Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion, 78, 1- 8 (2018) |
29 |
WANG, J., ZHOU, W., HUANG, Y., LYU, C., CHEN, W., and ZHU, W. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Applied Mathematics and Mechanics (English Edition), 39 (8), 1059- 1070 (2018)
doi: 10.1007/s10483-018-2360-6 |
30 | PANIGRAHI, S. R., FEENY, B. F., and DIAZ, A. R. Second-order perturbation analysis of low-amplitude traveling waves in a periodic chain with quadratic and cubic nonlinearity. Wave Motion, 69, 1- 15 (2017) |
31 | FRONK, M. D., and LEAMY, M. J. Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. Journal of Vibration and Acoustics, 139 (5), 051003 (2017) |
32 | ZIVIERI, R., GARESCI, F., AZZERBONI, B., CHIAPPINI, M., and FINOCCHIO, G. Nonlinear dispersion relation in anharmonic periodic mass-spring and mass-in-mass systems. Journal of Sound and Vibration, 462, 114929 (2019) |
33 | SEPEHRI, S., MASHHADI, M. M., and FAKHRABADI, M. M. S. Manipulation of wave motion in smart nonlinear phononic crystals made of shape memory alloys. Physica Scripta, 96 (12), 125527 (2021) |
34 | SEPEHRI, S., MASHHADI, M. M., and FAKHRABADI, M. M. S. Dispersion curves of electromagnetically actuated nonlinear monoatomic and mass-in-mass lattice chains. International Journal of Mechanical Sciences, 214, 106896 (2022) |
35 | FANG, L., and LEAMY, M. J. Perturbation analysis of nonlinear evanescent waves in a one-dimensional monatomic chain. Physical Review E, 105 (1), 014203 (2022) |
36 | WATTIS, J. A. D. Approximations to solitary waves on lattices. Ⅲ: the monatomic lattice with second-neighbour interactions. Journal of Physics A: Mathematical and General, 29 (24), 8139 (1996) |
37 | ANDRIANOV, I. V., AWREJCEWICZ, J., and WEICHERT, D. Improved continuous models for discrete media. Mathematical Problems in Engineering, 2010, 986242 (2010) |
38 | ZHOU, Y., WEI, P., and TANG, Q. Continuum model of a one-dimensional lattice of metamaterials. Acta Mechanica, 227 (8), 2361- 2376 (2016) |
39 | HACHE, F., CHALLAMEL, N., ELISHAKOFF, I., and WANG, C. M. Comparison of nonlocal continualization schemes for lattice beams and plates. Archive of Applied Mechanics, 87, 1105- 1138 (2017) |
40 | GÓMEZ-SILVA, F., and ZAERA, R. Analysis of low order non-standard continualization methods for enhanced prediction of the dispersive behaviour of a beam lattice. International Journal of Mechanical Sciences, 196, 106296 (2021) |
41 | ANDRIANOV, I. V., STARUSHENKO, G. A., and WEICHERT, D. Numerical investigation of 1D continuum dynamical models of discrete chain. Zeitschrift für Angewandte Mathematik und Mechanik, 91 (11-12), 945- 954 (2012) |
42 | KEVREKIDIS, P. G., KEVREKIDIS, I. G., BISHOP, A. R., and TITI, E. S. Continuum approach to discreteness. Physical Review E, 65 (4), 046613 (2002) |
43 | ZABUSKY, N. J., and DEEM, G. S. Dynamics of nonlinear lattices, I: localized optical excitations, acoustic radiation, and strong nonlinear behavior. Journal of Computational Physics, 2 (2), 126- 153 (1967) |
44 | PORUBOV, A. V., and ANDRIANOV, I. V. Nonlinear waves in diatomic crystals. Wave Motion, 50 (7), 1153- 1160 (2013) |
45 | ASKAR, A. Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity, Plasticity, Vol. 2, World Scientific, Singapore (1986) |
46 | WATTIS, J. A. D. Solitary waves in a diatomic lattice: analytic approximations for a wide range of speeds by quasi-continuum methods. Physics Letters A, 284 (1), 16- 22 (2001) |
47 | VILA, J., FERNÁNDEZ-SÁEZ, J., and ZAERA, R. Nonlinear continuum models for the dynamic behavior of 1D microstructured solids. International Journal of Solids and Structures, 117, 111- 122 (2017) |
48 | ANDRIANOV, I. V., ZEMLYANUKHIN, A., BOCHKAREV, A., and EROFEEV, V. Steady solitary and periodic waves in a nonlinear nonintegrable lattice. Symmetry, 12 (10), 1608 (2020) |
49 | DE DOMENICO, D., ASKES, H., and AIFANTIS, E. C. Gradient elasticity and dispersive wave propagation: model motivation and length scale identification procedures in concrete and composite laminates. International Journal of Solids and Structures, 158, 176- 190 (2019) |
50 | ASKES, H., CARAMÉS-SADDLER, M., and RODRÍGUEZ-FERRAN, A Bipenalty method for time domain computational dynamics. Proceedings of the Royal Society A, 466 (2117), 1389- 1408 (2010) |
51 | NAYFEH, A. H., and MOOK, D. T. Nonlinear Oscillations, John Wiley & Sons, New York (2008) |
52 | HUSSEIN, M. I., LEAMY, M. J., and RUZZENE, M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Applied Mechanics Reviews, 66 (4), 040802 (2014) |
53 | RAHMAN, Z., and BURTON, T. D. On higher order methods of multiple scales in non-linear oscillations-periodic steady state response. Journal of Sound and Vibration, 133 (3), 369- 379 (1989) |
[1] | Yabin JING, Lifeng WANG, Yuqiang GAO. Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1107-1118. |
[2] | Xin FENG, Liaoliang KE, Yang GAO. Love wave propagation in one-dimensional piezoelectric quasicrystal multilayered nanoplates with surface effects [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 619-632. |
[3] | M. SAFI, M. VAKILIFARD, M. J. MAHMOODI. Frequency-dependent viscoelasticity effects on the wave attenuation performance of multi-layered periodic foundations [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 407-424. |
[4] | Jiajia MAO, Hong CHENG, Tianxue MA. Elastic wave insulation and propagation control based on the programmable curved-beam periodic structure [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1791-1806. |
[5] | Zinan ZHAO, Nian LI, Yilin QU, Weiqiu CHEN. Novel mode-coupling vibrations of AlN thin film bulk acoustic resonator operating with thickness-extensional mode [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2187-2206. |
[6] | Zhaonian LI, Juan LIU, Biao HU, Yuxing WANG, Huoming SHEN. Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 35-52. |
[7] | Lele ZHANG, Jing ZHAO, Guoquan NIE, Jinxi LIU. Propagation of Rayleigh-type surface waves in a layered piezoelectric nanostructure with surface effects [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 327-340. |
[8] | G. ROURE, F. R. CUNHA. Modeling of unidirectional blood flow in microvessels with effects of shear-induced dispersion and particle migration [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1585-1600. |
[9] | Binying WANG, Jinxing LIU, A. K. SOH, Naigang LIANG. On band gaps of nonlocal acoustic lattice metamaterials: a robust strain gradient model [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 1-20. |
[10] | G. BASHAGA, S. SHAW. Shear-augmented solute dispersion during drug delivery for three-layer flow through microvessel under stress jump and momentum slip-Darcy model [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(6): 901-914. |
[11] | Chunxiao XIA, Wenlong XU, Guohua NIE. Dynamic quasi-continuum model for plate-type nano-materials and analysis of fundamental frequency [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(1): 85-94. |
[12] | M. ISHAQ, Hang XU. Nonlinear dynamical magnetosonic wave interactions and collisions in magnetized plasma [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1139-1156. |
[13] | A. MANDI, S. KUNDU, P. PATI, P. C. PAL. An analytical study on the Rayleigh wave generation in a stratified structure [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(7): 1039-1054. |
[14] | W. PAKOS. Free vibration of a sagged cable with attached discrete elements [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 631-648. |
[15] | Yanping KONG, Ruomeng TIAN, Jie XU, Jinxi LIU. Propagation behavior of SH waves in a piezomagnetic substrate with an orthorhombic piezoelectric layer [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 207-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||