Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (10): 1791-1806.doi: https://doi.org/10.1007/s10483-024-3164-9
• Articles • Previous Articles Next Articles
Jiajia MAO1, Hong CHENG1, Tianxue MA2,*()
Received:
2024-03-25
Online:
2024-10-03
Published:
2024-09-27
Contact:
Tianxue MA
E-mail:matx@bjtu.edu.cn
Supported by:
2010 MSC Number:
Jiajia MAO, Hong CHENG, Tianxue MA. Elastic wave insulation and propagation control based on the programmable curved-beam periodic structure. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1791-1806.
Fig. 3
The switchable and adjustable dispersion relations of PCBPS: the effects of (a) the mass density of the M-bar when Q=3.0 and (b) the curved beam's height-to-thickness ratio when ρM =500 kg/m3 on the onset frequency and the cutoff frequency of the bandgap, the broadened (c) and shifted (d) bandgaps, and (e) the displacement maps corresponding to the cases calculated in (d)(color online)"
Fig. 7
Responses of the PCBPS excited by the input wave with ω=9: (a) the varying mass density ρM at a fixed height-to-thickness ratio Q, (b) the varying height-to-thickness ratio Q at a fixed mass density ρM, and (c) their corresponding displacement maps, where the red line represents the input wave, and blue, green, and black lines represent the cases of Q=3.0 and ρM =500 kg/m3, Q=3.0 and ρM=2 000 kg/m3, and Q=3.2 and ρM=500 kg/m3, respectively (color online)"
1 | JI, J. C., LUO, Q., and YE, K. Vibration control based metamaterials and origami structures: a state-of-the-art review. Mechanical Systems and Signal Processing, 161, 107945 (2021) |
2 | HARNE, , R., L., and WANG, K. W. A review of the recent research on vibration energy harvesting via bistable systems. Smart Materials and Structures, 22 (2), 023001 (2013) |
3 | HUANG, H., SUN, C., and HUANG, G. On the negative effective mass density in acoustic metamaterials. International Journal of Engineering Science, 47 (4), 610- 617 (2009) |
4 | ZHOU, J., WANG, K., XU, D., and OUYANG, H. Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms. Physics Letters A, 381 (37), 3141- 3148 (2017) |
5 | LIU, Z., CHAN, C. T., and SHENG, P. Analytic model of phononic crystals with local resonances. Physical Review B, 71 (1), 014103 (2005) |
6 | EL-BORGI, S., FERNANDES, R., RAJENDRAN, P., YAZBECK, R., BOYD, J. G., and LAGOUDAS, D. C. Multiple bandgap formation in a locally resonant linear metamaterial beam: theory and experiments. Journal of Sound and Vibration, 488, 115647 (2020) |
7 |
WANG, K., ZHOU, J. X., TAN, D. G., LI, Z. Y., LIN, Q. D., and XU, D. L. A brief review of metamaterials for opening low-frequency band gaps. Applied Mathematics and Mechanics (English Edition), 43 (7), 1125- 1144 (2022)
doi: 10.1007/s10483-022-2870-9 |
8 | WU, T. T., HUANG, Z. G., TSAI, T. C., and WU, T. C. Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Applied Physics Letters, 93 (11), 111902 (2008) |
9 |
YI, J. L., WU, Z., XIA, R. Y., and LI, Z. Reconfigurable metamaterial for asymmetric and symmetric elastic wave absorption based on exceptional point in resonant bandgap. Applied Mathematics and Mechanics (English Edition), 44 (1), 1- 20 (2023)
doi: 10.1007/s10483-023-2949-7 |
10 | TANG, X. L., MA, T. X., and WANG, Y. S. Topological rainbow trapping and acoustic energy amplification in two-dimensional gradient phononic crystals. Applied Physics Letters, 122 (11), 112201 (2023) |
11 | AGHIGHI, F., MORRIS, J., and AMIRKHIZI, A. V. Low-frequency micro-structured mechanical metamaterials. Mechanics of Materials, 136, 103072 (2019) |
12 | KUMAR, N., and PAL, S. Low frequency and wide band gap metamaterial with divergent shaped star units: numerical and experimental investigations. Applied Physics Letters, 115 (25), 254101 (2019) |
13 | ZHAO, S. D., DONG, H. W., MIAO, X. B., WANG, Y. S., and ZHANG, C. Broadband coding metasurfaces with 2-bit manipulations. Physical Review Applied, 17 (3), 034019 (2022) |
14 | WANG, K., ZHOU, J., XU, D., and OUYANG, H. Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mechanical Systems and Signal Processing, 124, 664- 678 (2019) |
15 | ZHOU, J., DOU, L., WANG, K., XU, D., and OUYANG, H. A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dynamics, 96 (1), 647- 665 (2019) |
16 | FAN, H., YANG, L., TIAN, Y., and WANG, Z. Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Composite Structures, 243, 112244 (2020) |
17 | LIU, F., SHI, P., XU, Y., CAO, L., SHEN, Y., and YANG, Z. Total reflection of flexural waves by circular meta-slab and its application in vibration isolation. International Journal of Mechanical Sciences, 212, 106806 (2021) |
18 | WU, Z. J., LIU, W. Y., LI, F. M., and ZHANG, C. Z. Band-gap property of a novel elastic metamaterial beam with x-shaped local resonators. Mechanical Systems and Signal Processing, 134, 106357 (2019) |
19 | LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. Journal of Sound and Vibration, 330 (11), 2536- 2553 (2011) |
20 | ZHU, R., HUANG, G. L., HUANG, H. H., and SUN, C. T. Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Physics Letters A, 375 (30-31), 2863- 2867 (2011) |
21 | LI, Y., BAKER, E., REISSMAN, T., SUN, C., and LIU, W. K. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting. Applied Physics Letters, 111 (25), 251903 (2017) |
22 |
LI, Z. N., WANG, Y. Z., and WANG, Y. S. Tunable three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial by initial stresses. Applied Mathematics and Mechanics (English Edition), 43 (2), 167- 184 (2022)
doi: 10.1007/s10483-021-2808-9 |
23 | NANDA,A., and KARAMI, M. A. Tunable bandgaps in a deployable metamaterial. Journal of Sound and Vibration, 424, 120- 136 (2018) |
24 |
TIAN, R. L., GUAN, H. T., LU, X. H., ZHANG, X. L., HAO, H. N., FENG, W. J., and ZHANG, G. L. Dynamic crushing behavior and energy absorption of hybrid auxetic metamaterial inspired by Islamic motif art. Applied Mathematics and Mechanics (English Edition), 44 (3), 345- 362 (2023)
doi: 10.1007/s10483-023-2962-9 |
25 | DENG, J., XU, Y. X., GUASCH, O., GAO, N. S., TANG, L. L., and GUO, W. J. A wave and Rayleigh-Ritz method to compute complex dispersion curves in periodic lossy acoustic black holes. Journal of Sound and Vibration, 546, 117449 (2023) |
26 | DONG, H. W., ZHAO, S. D., MIAO, X. B., SHEN, C., ZHANG, X., ZHAO, Z., ZHANG, C., WANG, Y. S., and CHENG, L. Customized broadband pentamode metamaterials by topology optimization. Journal of the Mechanics and Physics of Solids, 152, 104407 (2021) |
27 | DONG, H. W., ZHAO, S. D., WANG, Y. S., and ZHANG, C. Z. Topology optimization of anisotropic broadband double-negative elastic metamaterials. Journal of the Mechanics and Physics of Solids, 105, 54- 80 (2017) |
28 | MA, T. X., FAN, Q. S., ZHANG, C., and WANG, Y. S. Flexural wave energy harvesting by the topological interface state of a phononic crystal beam. Extreme Mechanics Letters, 50, 101578 (2022) |
29 | QIU, J., LANG, J. H., and SLOCUM, A. H. A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 13 (2), 137- 146 (2004) |
30 | SIMITSES,G., and HODGES, D. H. Fundamentals of Structural Stability, Oxford, Butterworth-Heinemann (2006) |
31 | PI, Y. L., and BRADFORD, M. A. In-plane stability of preloaded shallow arches against dynamic snap-through accounting for rotational end restraints. Engineering Structures, 56, 1496- 1510 (2013) |
32 | LIU, M. C., GOMEZ, M., and VELLA, D. Delayed bifurcation in elastic snap-through instabilities. Journal of the Mechanics and Physics of Solids, 151, 104386 (2021) |
33 | HUANG, W. C., MA, C., and QIN, L. H. Snap-through behaviors of a pre-deformed ribbon under midpoint loadings. International Journal of Solids and Structures, 232, 111184 (2021) |
34 | MAO, J. J., WANG, S., TAN, W., and LIU, M. Modular multistable metamaterials with reprogrammable mechanical properties. Engineering Structures, 272, 114976 (2022) |
35 | HUANG, W., ZHANG, Y., YU, T., and LIU, M. Bifurcations and stability analysis of elastic slender structures using static discrete elastic rods method. Journal of Applied Mechanics, 90 (9), 094501 (2023) |
36 | ROSSI, N., MENDEZ, C. G., and HUESPE, A. E. Surrogate model for a mechanical metamaterial undergoing microstructure instabilities and phase transformations. International Journal of Mechanical Sciences, 243, 107913 (2023) |
37 | CHEN, M., XIAO, B., FENG, Y., YANG, T., ZHANG, H., LIU, Y., XU, W., JIANG, H., and WANG, Y. Wave characteristics of reconfigurable elastic metamaterials based on a multi-stable structure. Engineering Structures, 280, 115715 (2023) |
38 | TAN, X. J., CHEN, S., ZHU, S. W., WANG, B., XU, P. F., YAO, K. L., and SUN, Y. Reusable metamaterial via inelastic instability for energy absorption. International Journal of Mechanical Sciences, 155, 509- 517 (2019) |
39 | MA, H., WANG, K., ZHAO, H., MU, R., and YAN, B. A reusable metastructure for tri-directional energy dissipation. International Journal of Mechanical Sciences, 214, 106870 (2022) |
40 | CHE, K., YUAN, C., WU, J., JERRY, QI H., and MEAUD, J. Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. Journal of Applied Mechanics, 84 (1), 011004 (2017) |
41 | RESTREPO, D., MANKAME, N. D., and ZAVATTIERI, P. D. Phase transforming cellular materials. Extreme Mechanics Letters, 4, 52- 60 (2015) |
42 | ZHANG, Y., RESTREPO, D., VELAY-LIZANCOS, M., MANKAME, N. D., and ZAVATTIERI, P. D. Energy dissipation in functionally two-dimensional phase transforming cellular materials. Scientific Reports, 9 (1), 12581 (2019) |
43 | YANG, H., and MA, L. 1D to 3D multi-stable architected materials with zero Poisson's ratio and controllable thermal expansion. Materials and Design, 188, 108430 (2020) |
44 | YANG, H., and MA, L. 1D and 2D snapping mechanical metamaterials with cylindrical topology. International Journal of Solids and Structures, 204, 220- 232 (2020) |
45 | CORREA, D. M., SEEPERSAD, C. C., and HABERMAN, M. R. Mechanical design of negative stiffness honeycomb materials. Integrating Materials and Manufacturing Innovation, 4 (1), 165- 175 (2015) |
46 | MEAUD,J., and CHE, K. K. Tuning elastic wave propagation in multistable architected materials. International Journal of Solids and Structures, 122, 69- 80 (2017) |
47 | LIU, E., FANG, X., and WEN, J. Harmonic and shock wave propagation in bistable periodic structure: regularity, randomness, and tunability. Journal of Vibration and Control, 28 (21-22), 3332- 3343 (2021) |
48 | WANG, Y. F., WANG, Y. Z., WU, B., CHEN, W., and WANG, Y. S. Tunable and active phononic crystals and metamaterials. Applied Mechanics Reviews, 72 (4), 040801 (2020) |
49 |
WANG, Z., MA, Z., GUO, X., and ZHANG, D. A new tunable elastic metamaterial structure for manipulating band gaps/wave propagation. Applied Mathematics and Mechanics (English Edition), 42 (11), 1543- 1554 (2021)
doi: 10.1007/s10483-021-2787-8 |
50 | WANG, J. X., LIU, X., YANG, Q. S., TAO, R., LI, Y., and MA, L. H. A novel programmable composite metamaterial with tunable Poisson's ratio and bandgap based on multi-stable switching. Composites Science and Technology, 219, 109245 (2021) |
51 | REN, Z. W., JI, L. T., TAO, R., CHEN, M. J., WAN, Z. S., ZHAO, Z., and FANG, D. N. SMP-based multi-stable mechanical metamaterials: from bandgap tuning to wave logic gates. Extreme Mechanics Letters, 42, 101077 (2021) |
52 | LEAMY, M. J. Exact wave-based Bloch analysis procedure for investigating wave propagation in two-dimensional periodic lattices. Journal of Sound and Vibration, 331 (7), 1580- 1596 (2012) |
53 | NADKARNI, N., DARAIO, C., and KOCHMANN, D. M. Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation. Physical Review E, 90 (2), 023204 (2014) |
54 | NARISETTI, R. K., LEAMY, M. J., and RUZZENE, M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. Journal of Vibration and Acoustics-Transactions of the ASME, 132 (3), 031001 (2010) |
55 | HUSSEIN, H., LE, MOAL P., BOURBON, G., HADDAB, Y., and LUTZ, P. Modeling and stress analysis of a pre-shaped curved beam: influence of high modes of buckling. International Journal of Applied Mechanics, 7 (4), 1550055 (2015) |
56 | CHENG,H., and MAO, J. J. Analysis of bandgap formation mechanism based on the programmable curved-beam periodic structure. Mechanisms and Machine Science, 156, 313- 323 (2024) |
[1] | Shuo WANG, Anshuai WANG, Yansen WU, Xiaofeng LI, Yongtao SUN, Zhaozhan ZHANG, Qian DING, G. D. AYALEW, Yunxiang MA, Qingyu LIN. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1261-1278. |
[2] | Yabin JING, Lifeng WANG, Yuqiang GAO. Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1107-1118. |
[3] | Xingjian DONG, Shuo WANG, Anshuai WANG, Liang WANG, Zhaozhan ZHANG, Yuanhao TIE, Qingyu LIN, Yongtao SUN. Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1841-1856. |
[4] | A. RAHMANI, S. FAROUGHI, M. SARI. On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1577-1596. |
[5] | Xinte WANG, Juan LIU, Biao HU, Bo ZHANG, Huoming SHEN. Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1821-1840. |
[6] | M. ISHAQ, Hang XU. Nonlinear dynamical magnetosonic wave interactions and collisions in magnetized plasma [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1139-1156. |
[7] | Weibin WEN, Shibin LUO, Shengyu DUAN, Jun LIANG, Daining FANG. Improved quadratic isogeometric element simulation of one-dimensional elastic wave propagation with central difference method [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(5): 703-716. |
[8] | Yanping KONG, Ruomeng TIAN, Jie XU, Jinxi LIU. Propagation behavior of SH waves in a piezomagnetic substrate with an orthorhombic piezoelectric layer [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 207-218. |
[9] | Shan JIANG, Longxiang DAI, Hao CHEN, Hongping HU, Wei JIANG, Xuedong CHEN. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 411-422. |
[10] | Chenyue XIE, Jianjun TAO, Ji LI. Viscous Rayleigh-Taylor instability with and without diffusion effect [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 263-270. |
[11] | M. MOHAMMADIMEHR, M. J. FARAHI, S. ALIMIRZAEI. Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(10): 1375-1392. |
[12] | U. GÜVEN. General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(10): 1305-1318. |
[13] | A. M. ABD-ALLA;S. M. ABO-DAHAB. Effect of magnetic field on poroelastic bone model for internal remodeling [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(7): 889-906. |
[14] | A. M. ABD-ALLA;G. A. YAHYA. Thermal stresses in infinite circular cylinder subjected to rotation [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(8): 1059-1078. |
[15] | Wei-yun CHEN;Tang-dai XIA;Wei CHEN;Chao-jiao ZHAI. Propagation of plane P-waves at interface between elastic solid and unsaturated poroelastic medium [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(7): 829-844. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||