Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (6): 1071-1084.doi: https://doi.org/10.1007/s10483-024-3120-7
• Articles • Previous Articles Next Articles
Qihang MA1, Kaileong CHONG1,2, Bofu WANG1,*(), Quan ZHOU1
Received:
2024-01-06
Online:
2024-06-03
Published:
2024-06-01
Contact:
Bofu WANG
E-mail:bofuwang@shu.edu.cn
Supported by:
2010 MSC Number:
Qihang MA, Kaileong CHONG, Bofu WANG, Quan ZHOU. Strong shock propagation for the finite-source circular blast in a confined domain. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 1071-1084.
1 | HAN,R.,ZHANG,A. M.,TAN,S. C., andLI,S.Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple time scales.Journal of Fluid Mechanics,932,A8(2022) |
2 | LI,S.,ZHANG,A. M., andHAN,R.3D model for inertial cavitation bubble dynamics in binary immiscible fluids.Journal of Computational Physics,494,112508(2023) |
3 | ZHAO,C. B.,WU,J. Z.,WANG,B. F.,CHANG,T. C.,ZHOU,Q., andCHONG,K. L.Numerical study on the onset of global-scale flow from individual buoyant plumes: implications for indoor disease transmission.Physics of Fluids,36(3),035149(2024) |
4 | MENG,W. S.,ZHAO,C. B.,WU,J. Z.,WANG,B. F.,ZHOU,Q., andCHONG,K. L.Simulation of flow and debris migration in extreme ultraviolet source vessel.Physics of Fluids,36(2),023322(2024) |
5 | TAYLOR,G. I.The air wave surrounding an expanding sphere.Proceedings of the Royal Society of London,186,273-292(1946) |
6 | WHITHAM,G. B.The propagation of sperical blast.Proceedings of the Royal Society of London,203,571-581(1950) |
7 | TAYLOR,G. I.The formation of a blast wave by a very intense explosion, I: theoretical discussion.Proceedings of the Royal Society of London,201,159-174(1950) |
8 | SEDOV, L. I. Similarity and Dimensional Methods in Mechanics, Academic Press, New York (1959) |
9 | BRODE,H. L.Numerical solutions of spherical blast waves.Journal of Applied Physics,26,766-775(1955) |
10 | BOYER,D. W.An experimental study of the explosion generated by a pressurized sphere.Journal of Fluid Mechanics,9,401-429(1960) |
11 |
GUAN,H.,CHUIJIE,W. U.,WANG,J. C., andWEI,Z. J.Numerical analysis of the interaction of 3D compressible bubble clusters.Applied Mathematics and Mechanics (English Edition,40(8),1181-1196(2019)
doi: 10.1007/s10483-019-2509-6 |
12 | SACHDEV, P. L. Shock Waves and Explosions, Chapman & Hall/CRC, Boca Raton (2004) |
13 |
BASKO,M. M.Numerical method for simulating rarefaction shocks in the approximation of phase-flip hydrodynamics.Applied Mathematics and Mechanics (English Edition),42(6),871-884(2021)
doi: 10.1007/s10483-021-2734-6 |
14 |
XU,T. B.,MA,C. T., andWANG,X. Z.Conservative high precision pseudo arc-length method for strong discontinuity of detonation wave.Applied Mathematics and Mechanics (English Edition),43(3),417-436(2022)
doi: 10.1007/s10483-022-2817-9 |
15 | LING,Y.,HASELBACHER,A., andBALACHANDAR,S.Importance of unsteady contributions to force and heating for particles in compressible flows, part 2: application to particle dispersal by blast wave.International Journal of Multiphase Flow,37,1013-1025(2011) |
16 | ZAREI,Z., andFROST,D. L.Simplified modeling of blast waves from metalized heterogeneous explosives.Shock Waves,21,425-438(2011) |
17 | MANKBADI,M. R., andBALACHANDAR,S.Compressible inviscid instability of rapidly expanding spherical material interfaces.Physics of Fluids,24(3),034106(2012) |
18 | TAYLOR,G. I.The formation of a blast wave by a very intense explosion, Ⅱ: the atomic explosion of 1945.Proceedings of the Royal Society of London,201,175-186(1950) |
19 | SAKURAI,A.On the propagation and structure of the blast wave.Journal of the Physical Society of Japan,8,662-669(1953) |
20 | WHITHAM,G. B.On the propagation of shock waves through regions of non-uniform area or flow.Journal of the Physical Society of Japan,4(4),337-360(1958) |
21 | FRIEDMAN,,M.,P..A simplified analysis of spherical and cylindrical blast waves.Journal of Fluid Mechanics,11,1-15(1961) |
22 | LING,Y., andBALACHANDAR,S.Asymptotic scaling laws and semi-similarity solutions for a finite-source spherical blast wave.Journal of Fluid Mechanics,850,674-707(2018) |
23 | OSCAR,O. V.Physics of laser-driven tin plasma sources of euv radiation for nanolithography.Plasma Sources Science and Technology,28(8),083001(2019) |
24 | BELL, G. I. Taylor instability on cylinders and spheres in the small amplitude approximation. Los Alamos National Laboratory, Report LA-1321, New Mexico (1951) |
25 | EPSTEIN,R.On the bell-plesset effects: the effects of uniform compression and geometrical convergence on the classical rayleigh-taylor instability.Physics of Plasmas,11,5114-5124(2004) |
26 | MANKBADI,M. R., andBALACHANDAR,S.Viscous effects on the non-classical Rayleigh-Taylor instability of spherical material interfaces.Shock Waves,23,603-617(2013) |
27 | MANKBADI,M. R., andBALACHANDAR,S.Multiphase effects on spherical Rayleigh-Taylor interfacial instability.Physics of Fluids,26,023301(2014) |
28 | BROUILLETTE,M.The Richtmyer-Meshkov instability.Annual Review of Fluid Mechanics,34,445-468(2002) |
29 | BALAKRISHNAN,K., andMENON,S.On the role of ambient reactive particles in the mixing and afterburn behind explosive blast waves.Combustion Science and Technology,182,186-214(2010) |
30 | BALAKRISHNAN,K., andMENON,S.A multiphase buoyancy-drag model for the study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in dusty gases.Laser and Particle Beams,29,201-217(2011) |
31 | ZHOU,Q.,LU,H.,LIU,B. F., andZHONG,B. C.Measurements of heat transport by turbulent Rayleigh-Bénard convection in rectangular cells of widely varying aspect ratios.Science China Physics Mechanics and Astronomy,56,989-994(2013) |
32 | GUO,X. L.,WU,J. Z.,WANG,B. F.,ZHOU,Q., andCHONG,K. L.Flow structure transition in thermal vibrational convection.Jounral of Fluid Mechanics,974,A29(2023) |
33 | LI,Z. F.,LI,J. H.,WU,J. Z.,CHONG,K. L.,WANG,B. F.,ZHOU,Q., andLIU,Y. L.Numerical simulation of flow instability induced by a fixed cylinder placed near a plane wall in oscillating flow.Ocean Engineering,288,116115(2023) |
34 | ZHANG,Y., andZHOU,Q.Low-Prandtl-number effects on global and local statistics in two-dimensional Rayleigh-Bénard convection.Physics of Fluids,36(1),015107(2024) |
35 | ROGERS,M. H.Similarity flows behind strong shock waves.The Quarterly Journal of Mechanics and Applied Mathematics,11(4),411-422(1958) |
36 | GREGOIRE,A.,SEBASTIEN,C., andKOKH,S.A five-equation model for the simulation of interfaces between compressible fluids.Journal of Computational Physics,181(2),577-616(2002) |
37 | TSOUTSANIS,P.Stencil selection algorithms for weno schemes on unstructured meshes.Journal of Computational Physics,475,108840(2019) |
38 | TSOUTSANIS,P.,ADEBAYO,E. M.,MERINO,A. C.,ARJONA,A. P., andSKOTE,M.CWENO finite-volume interface capturing schemes for multicomponent flows using unstructured meshes.Journal of Scientific Computing,89(3),64(2021) |
39 | TORO,E. F.,SPRUCE,M., andSPEARES,W.Restoration of the contact surface in the HLL-Riemann solver.Shock Waves,4(1),25-34(1994) |
40 | MA, Q. H., FENG, F., CHONG, K. L., WU, J. Z., LU, Z. M., ZHOU, Q., and WANG, B. F. High-order finite-volume central targeted ENO family scheme for compressible flows in unstructured meshes. arXiv Preprint, arXiv: 2312.17042 (2023) https://doi.org/10.48550/arXiv.2312.17042 |
41 |
HOU,Y. H.,JIN,K.,FENG,Y. L., andZHENG,X. J.High-order targeted essentially non-oscillatory scheme for two-fluid plasma model.Applied Mathematics and Mechanics (English Edition),44(6),941-960(2023)
doi: 10.1007/s10483-023-3003-6 |
42 | JI,Z.,LIANG,T., andFU,L.A class of new high-order finite-volume teno schemes for hyperbolic conservation laws with unstructured meshes.Journal of Scientific Computing,92(2),1-39(2022) |
43 | GOTTLIEB,S., andSHU,C. W.Total variation diminishing runge-kutta schemes.Mathematics of Computation,67(221),73-85(1996) |
44 | GLASSTONE, S. and DOLAN, P. J. The Effects of Nuclear Weapons, United States Department of Defense, Washington (1977) |
45 | SONG,S.,LI,Y., andLEE,C.Effect of surface conditions on blast wave propagation.Journal of Mechanical Science and Technology,30(9),3907-3915(2016) |
[1] | Yanan LI, Jieyu DING, Hu DING, Liqun CHEN. Natural vibration and critical velocity of translating Timoshenko beam with non-homogeneous boundaries [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1523-1538. |
[2] | Xinyu LIAN, Bing LIU, Huaxia DENG, Xinglong GONG. A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1279-1294. |
[3] | Xingzhong WANG, Shiteng RUI, Shaokun YANG, Weiquan ZHANG, Fuyin MA. A low-frequency pure metal metamaterial absorber with continuously tunable stiffness [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1209-1224. |
[4] | Jiahao ZHOU, Jiaxi ZHOU, Hongbin PAN, Kai WANG, Changqi CAI, Guilin WEN. Multi-layer quasi-zero-stiffness meta-structure for high-efficiency vibration isolation at low frequency [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1189-1208. |
[5] | Jinghu TANG, Chaofeng LI, Jin ZHOU, Zhiwei WU. Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 873-890. |
[6] | Shiping JIANG, Xiujing HAN, Hailong YU. Mixed-mode fast-slow oscillations in the frequency switching Duffing system with a 1:n frequency ratio [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2131-2146. |
[7] | Zhi LI, Cuiying FAN, Mingkai GUO, Guoshuai QIN, Chunsheng LU, Dongying LIU, Minghao ZHAO. Natural frequency analysis of laminated piezoelectric beams with arbitrary polarization directions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1949-1964. |
[8] | Xingjian DONG, Shuo WANG, Anshuai WANG, Liang WANG, Zhaozhan ZHANG, Yuanhao TIE, Qingyu LIN, Yongtao SUN. Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1841-1856. |
[9] | Qingqing LIU, Shenlong WANG, Ge YAN, Hu DING, Haihua WANG, Qiang SHI, Xiaohong DING, Huijie YU. A human-sensitive frequency band vibration isolator for heavy-duty truck seats [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1733-1748. |
[10] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[11] | Bo DOU, Hu DING, Xiaoye MAO, Sha WEI, Liqun CHEN. Dynamic modeling of fluid-conveying pipes restrained by a retaining clip [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1225-1240. |
[12] | Wenhao YUAN, Haitao LIAO, Ruxin GAO, Fenglian LI. Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 897-916. |
[13] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
[14] | Shihua ZHOU, Dongsheng ZHANG, Bowen HOU, Zhaohui REN. Vibration isolation performance analysis of a bilateral supported bio-inspired anti-vibration control system [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 759-772. |
[15] | Yanpeng YUE, Yongping WAN. Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 525-546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||