Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (11): 1949-1964.doi: https://doi.org/10.1007/s10483-024-3182-9
• Articles • Previous Articles Next Articles
Zhi LI1, Cuiying FAN1,*(), Mingkai GUO2, Guoshuai QIN2, Chunsheng LU3, Dongying LIU4, Minghao ZHAO1,5,6
Received:
2024-07-01
Online:
2024-11-03
Published:
2024-10-30
Contact:
Cuiying FAN
E-mail:fancy@zzu.edu.cn
Supported by:
2010 MSC Number:
Zhi LI, Cuiying FAN, Mingkai GUO, Guoshuai QIN, Chunsheng LU, Dongying LIU, Minghao ZHAO. Natural frequency analysis of laminated piezoelectric beams with arbitrary polarization directions. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1949-1964.
1 | YANG, J. An Introduction to the Theory of Piezoelectricity, 2nd ed Springer, New York (2005) |
2 | UCHINO, K. Advanced Piezoelectric Materials: Science and Technology, 2nd ed Woodhead Publishing, Cambridge (2017) |
3 | CHORSI, M. T., CURRY, E. J., and CHORSI, H. T. Piezoelectric biomaterials for sensors and actuators. Advanced Materials, 31 (1), 1802084 (2019) |
4 | SABARIANAND, D. V., KARTHIKEYAN, P., and MUTHURAMALINGAM, T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mechanical Systems and Signal Processing, 140, 106634 (2020) |
5 | WANG, Y., ZANG, P., YANG, D., ZHANG, R., GAI, S., and YANG, P. The fundamentals and applications of piezoelectric materials for tumor therapy: recent advances and outlook. Materials Horizons, 10 (4), 1140- 1184 (2023) |
6 | HUNSTIG, M., HEMSEL, T., and SEXTRO, W. Modelling the friction contact in an inertia motor. Journal of Intelligent Material Systems and Structures, 24 (11), 1380- 1391 (2013) |
7 | KO, H. P., JEONG, H., and KOC, B. Piezoelectric actuator for mobile auto focus camera applications. Journal of Electroceramics, 23 (2), 530 (2009) |
8 | SUN, S., LIU, Z., ZHENG, J., CHENG, Q., TAN, Y., HUANG, S., ZHANG, L., WANG, Y., and ZHOU, H. A directional chitosan sound sensor based on piezoelectric-triboelectric sensing. ACS Macro Letters, 12 (5), 577- 582 (2023) |
9 | KHAZAEE, M., ROSENDAHL, L., and REZANIA, A. A comprehensive electromechanically coupled model for non-uniform piezoelectric energy harvesting composite laminates. Mechanical Systems and Signal Processing, 145, 106927 (2020) |
10 | LIU, H., ZHONG, J., LEE, C., LEE, S. W., and LIN, L. A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Applied Physics Reviews, 5 (4), 041306 (2018) |
11 | WU, Y., MA, Y., ZHENG, H., and RAMAKRISHNA, S. Piezoelectric materials for flexible and wearable electronics: a review. Materials & Design, 211, 110164 (2021) |
12 | SHARMA, S., KIRAN, R., AZAD, P., and VAISH, R. A review of piezoelectric energy harvesting tiles: available designs and future perspective. Energy Conversion and Management, 254, 115272 (2022) |
13 | LI, Z., YI, X., YANG, J., BIAN, L., YU, Z., and DONG, S. Designing artificial vibration modes of piezoelectric devices using programmable, 3D ordered structure with piezoceramic strain units. Advanced Materials, 34 (2), 2107236 (2022) |
14 | LIU, C., YU, A., PENG, M., SONG, M., LIU, W., ZHANG, Y., and ZHAI, J. Improvement in the piezoelectric performance of a ZnO nanogenerator by a combination of chemical doping and interfacial modification. The Journal of Physical Chemistry C, 120 (13), 6971- 6977 (2016) |
15 | LIU, J., GAO, X., JIN, H., REN, K., GUO, J., QIAO, L., QIU, C., CHEN, W., HE, Y., and DONG, S. Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units. Nature Communications, 13 (1), 6567 (2022) |
16 | MA, J., ZHU, K., HUO, D., QI, X., SUN, E., and ZHANG, R. Performance enhancement of the piezoelectric ceramics by alternating current polarizing. Applied Physics Letters, 118 (2), 022901 (2021) |
17 | LUCINSKIS, R., MAZEIKA, D., and BANSEVICIUS, R. Investigation of oscillations of piezoelectric actuators with multi-directional polarization. Mechanical Systems and Signal Processing, 99, 450- 458 (2018) |
18 | CHEN, J., LI, X., LIU, G., CHEN, Z., and DONG, S. A shear-bending mode high temperature piezoelectric actuator. Applied Physics Letters, 101 (1), 012909 (2012) |
19 | GIBERT, J. M. Demonstration of the effect of piezoelectric polarization vector on the performance of a vibration energy harvester. Active and Passive Smart Structures and Integrated Systems 2014, 9057, 186- 199 (2014) |
20 | KIRAN, R., KUMAR, A., KUMAR, R., and VAISH, R. Poling direction driven large enhancement in piezoelectric performance. Scripta Materialia, 151, 76- 81 (2018) |
21 | BERIK, P., and BISHAY, P. L. Parameter identification of the nonlinear piezoelectric shear d15 coefficient of a smart composite actuator. Actuators, 10 (7), 168 (2021) |
22 | KIRAN, R., KUMAR, A., SHARMA, S., KUMAR, R., and VAISH, R. Deciphering the importance of graded poling in piezoelectric materials: a numerical study. Engineering Reports, 2 (11), e12266 (2020) |
23 | JIN, H., GAO, X., REN, K., LIU, J., QIAO, L., LIU, M., CHEN, W., HE, Y., DONG, S., and XU, Z. Review on piezoelectric actuators based on high-performance piezoelectric materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69 (11), 3057- 3069 (2022) |
24 | SHAO, Y., SHAO, S., ZHAI, C., SONG, S., HAN, W., XU, M., and REN, B. Development of a frequency-controlled inertial type piezoelectric locomotion method with nano-scale motion resolution driven by a symmetrical waveform. Mechanical Systems and Signal Processing, 177, 109271 (2022) |
25 | HU, X., CAO, T., WANG, B., WEN, Z., YAN, K., and WU, D. A low-cost multilayer piezoelectric actuator for ultrasonic motor stator driving fabricated by a low-temperature co-fired ceramic process. Ceramics International, 49 (4), 6119- 6124 (2023) |
26 | WU, Q. Q., ZHAO, Y., and LI, X. C. Pyroelectric infrared device with multilayer compensation structure. Sensors and Actuators A: Physical, 367, 115050 (2024) |
27 | WANG, X., SHI, Z., WANG, J., and XIANG, H. A stack based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads. Smart Materials and Structures, 25, 055005 (2016) |
28 | WANG, J., CAO, Y., XIANG, H., ZHANG, Z., LIANG, J., LI, X., DING, D., LI, T., and TANG, L. A piezoelectric smart backing ring for high-performance power generation subject to train induced steel-spring fulcrum forces. Energy Conversion and Management, 257, 115442 (2022) |
29 | WU, C. P., and LIU, Y. C. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells. Composite Structures, 147, 1- 15 (2016) |
30 | ANNIGERI, A. R., GANESAN, N., and SWARNAMANI, S. Free vibration behaviour of multiphase and layered magneto-electro-elastic beam. Journal of Sound and Vibration, 299 (1-2), 44- 63 (2007) |
31 | LIM, C. W., CHEN, W. Q., and ZENG, Q. C. Exact solution for thick, laminated piezoelectric beams. Mechanics of Advanced Materials and Structures, 14 (2), 81- 87 (2007) |
32 | LI, Y., and SHI, Z. Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature. Composite Structures, 87 (3), 257- 264 (2009) |
33 | SHI, Z., and ZHAO, S. The resonance frequency of laminated piezoelectric rectangular plates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58 (3), 623- 628 (2011) |
34 | SHI, Z. F., and YAO, R. X. Steady-state responses of forced laminated piezoelectric composite beams. Archive of Applied Mechanics, 82, 1145- 1158 (2012) |
35 | SINGH, A., KUMARI, P., and BIND, P. 2D free vibration solution of the hybrid piezoelectric laminated beams using extended Kantorovich method. Journal of The Institution of Engineers (India): Series C, 101, 1- 12 (2020) |
36 | AKHLAQ, A., DAWOOD, M. S. I. S., ALI, J. S. M., and SULAEMAN, E. A review of effect of higher-order nonlinear theories on analysis of piezoelectric laminates. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012004 (2022) |
37 | ZHANG, T. Y., QIAN, C. F., and TONG, P. Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material. International Journal of Solids and Structures, 35 (17), 2121- 2149 (1998) |
38 | LIU, D., CHEN, D., YANG, J., and KITIPORNCHAI, S. Buckling and free vibration of axially functionally graded graphene reinforced nanocomposite beams. Engineering Structures, 249, 113327 (2021) |
39 | LIU, D., LI, Z., KITIPORNCHAI, S., and YANG, J. Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates. Composite Structures, 229, 111453 (2019) |
40 | KUMAR, P., and HARSHA, S. P. Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Composite Structures, 267, 113901 (2021) |
[1] | Yanan LI, Jieyu DING, Hu DING, Liqun CHEN. Natural vibration and critical velocity of translating Timoshenko beam with non-homogeneous boundaries [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1523-1538. |
[2] | Xiaoyang SU, Tong HU, Wei ZHANG, Houjun KANG, Yunyue CONG, Quan YUAN. Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 983-1000. |
[3] | S. JAHANGIRI, A. GHORBANPOUR ARANI, Z. KHODDAMI MARAGHI. Dynamics of a rotating ring-stiffened sandwich conical shell with an auxetic honeycomb core [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 963-982. |
[4] | H. M. FEIZABAD, M. H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[5] | Xiaodong GUO, Zhu SU, Lifeng WANG. Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 295-310. |
[6] | Xueqian FANG, Qilin HE, Hongwei MA, Changsong ZHU. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1351-1366. |
[7] | Bo DOU, Hu DING, Xiaoye MAO, Sha WEI, Liqun CHEN. Dynamic modeling of fluid-conveying pipes restrained by a retaining clip [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1225-1240. |
[8] | Wenhao YUAN, Haitao LIAO, Ruxin GAO, Fenglian LI. Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 897-916. |
[9] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
[10] | U. N. ARIBAS, M. AYDIN, M. ATALAY, M. H. OMURTAG. Cross-sectional warping and precision of the first-order shear deformation theory for vibrations of transversely functionally graded curved beams [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2109-2138. |
[11] | Pei ZHANG, P. SCHIAVONE, Hai QING. Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2071-2092. |
[12] | Luke ZHAO, Feng JIN, Zhushan SHAO, Wenjun WANG. Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2039-2056. |
[13] | Changsong ZHU, Xueqian FANG, Jinxi LIU. Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1761-1776. |
[14] | Lingkang ZHAO, Peijun WEI, Yueqiu LI. Free vibration of thermo-elastic microplate based on spatiotemporal fractional-order derivatives with nonlocal characteristic length and time [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 109-124. |
[15] | Pei ZHANG, P. SCHIAVONE, Hai QING. Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 89-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||