Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (6): 1001-1014.doi: https://doi.org/10.1007/s10483-024-3122-9
• Articles • Previous Articles Next Articles
Lingyun GUO, Yizhan YANG, Wanli YANG, Yuantai HU*()
Received:
2024-02-17
Online:
2024-06-03
Published:
2024-06-01
Contact:
Yuantai HU
E-mail:hudeng@263.net
About author:
First author contact:‡ These authors contributed equally to this work
Supported by:
2010 MSC Number:
Lingyun GUO, Yizhan YANG, Wanli YANG, Yuantai HU. The action mechanism of the work done by the electric field force on moving charges to stimulate the emergence of carrier generation/recombination in a PN junction. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 1001-1014.
1 | WEN, B., SADER, J. E., and BOLAND, J. J. Mechanical properties of ZnO nanowires. Physical Review Letters, 101, 175502 (2008) |
2 | SIDDIQUE, M. N., ALI, T., AHMED, A., and TRIPATHI, P. Enhanced electrical and thermal properties of pure and Ni substituted ZnO nanoparticles. Nano-Structures and Nano-Objects, 16, 156- 166 (2018) |
3 | ZHU, G., YANG, R., WANG, S., and WANG, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Letters, 10, 3151- 3155 (2010) |
4 | WU, C., WANG, A. C., DING, W., GUO, H., and WANG, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Advanced Energy Materials, 9, 1802906 (2019) |
5 | WANG, Z. L. Triboelectric nanogenerator (TENG) — sparking an energy and sensor revolution. Advanced Energy Materials, 10, 2000137 (2020) |
6 | WHITE, D. L. Amplification of ultrasonic waves in piezoelectric semiconductors. Journal of Applied Physics, 33, 2547- 2554 (1962) |
7 | HICKERNELL, F. S. The piezoelectric semiconductor and acoustoelectronic device development in the sixties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 737- 745 (2005) |
8 | WANG, X., ZHOU, J., SONG, J., LIU, J., XU, N., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6, 2768- 2772 (2006) |
9 | KWON, S. S., HONG, W. K., JO, G., MAENG, J., KIM, T. W., SONG, S., and LEE, T. Piezoelectric effect on the electronic transport characteristics of ZnO nanowire field-effect transistors on bent flexible substrates. Advanced Materials, 20, 4557- 4562 (2008) |
10 | CHOI, S. M., LEE, K. H., LIM, C. H., and SEO, W. S. Oxide-based thermoelectric power generation module using p-type Ca3Co4O9 and n-type (ZnO)7In2O3 legs. Energy Conversion and Management, 52, 335- 339 (2011) |
11 | YANG, Y., ZHOU, Y., WU, J. M., and WANG, Z. L. Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors. ACS Nano, 6, 8456- 8461 (2012) |
12 | HSIAO, C. C., HUANG, K. Y., and HU, Y. C. Fabrication of a ZnO pyroelectric sensor. Sensors, 8, 185- 192 (2008) |
13 | ZHANG, Y., LIU, Y., and WANG, Z. L. Fundamental theory of piezotronics. Advanced Materials, 23, 3004 (2011) |
14 | WANG, Z. L. Progress in piezotronics and piezo-phototronics. Advanced Materials, 24, 4632- 4646 (2012) |
15 | HUANG, H., QIAN, Z., and YANG, J. I-V characteristics of a piezoelectric semiconductor nanofiber under local tensile/compressive stress. Journal of Applied Physics, 126, 164902 (2019) |
16 | YANG, Z., SUN, L., ZHANG, C., ZHANG, C., and GAO, C. Analysis of a composite piezoelectric semiconductor cylindrical shell under the thermal loading. Mechanics of Materials, 164, 104153 (2022) |
17 | FAN, S., YANG, W., and HU, Y. Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading. Nano Energy, 52, 416- 421 (2018) |
18 | GUO, M. K., LU, C., QIN, G. S., and ZHAO, M. H. Temperature gradient-dominated electrical behaviours in a piezoelectric PN junction. Journal of Electronic Materials, 50, 947- 953 (2021) |
19 | CHENG, R. R., ZHANG, C. L., and CHEN, W. Q. Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy, 66, 104081 (2019) |
20 | ZHAO, L., DENG, T., and JIN, F. Two-dimensional analysis on the magnetic field adjusted electrical behaviors in composite semiconductor structures. Composite Structures, 309, 116732 (2023) |
21 | WANG, W., JIN, F., HE, T., and MA, Y. Size-dependent and nonlinear magneto-mechanical coupling characteristics analysis for extensional vibration of composite multiferroic piezoelectric semiconductor nanoharvester with surface effect. European Journal of Mechanics-A/Solids, 96, 104708 (2022) |
22 | LEE, K. Y., KUMAR, B., SEO, J., KIM, K. H., SOHN, J. I., CHA, S. N., CHOI, D., WANG, Z. L., and KIM, S. W. P-type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Letters, 12, 1959- 1964 (2012) |
23 | CHUNG, S. Y., KIM, S., LEE, J. H., KIM, K., KIM, S. W., KANG, C. Y., YOON, S. J., and KIM, Y. S. All-solution-processed flexible thin film piezoelectric nanogenerator. Advanced Materials, 24, 6022- 6027 (2012) |
24 | YANG, Y., YANG, W., WANG, Y., ZENG, X., and HU, Y. A mechanically induced artificial potential barrier and its tuning mechanism on performance of piezoelectric PN junctions. Nano Energy, 92, 106741 (2022) |
25 | ZHENG, J., ZHOU, Y., ZHANG, Y. M., LI, L., and ZHANG, Y. C-V characteristics of piezotronic metal-insulator-semiconductor transistor. Science Bulletin, 65, 161- 168 (2020) |
26 | HUANG, K., and HAN, R. Q. The Physical Basis of Semiconductors, The Science Publishing Company, Beijing (2015) |
27 | YANG, G., YANG, L., DU, J., WANG, J., and YANG, J. PN junctions with coupling to bending deformation in composite piezoelectric semiconductor fibers. International Journal of Mechanical Sciences, 173, 105421 (2020) |
28 | CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Electronic Materials, 49, 3140- 3148 (2020) |
29 | YANG, W., LIU, J., and HU, Y. Mechanical tuning methodology on the barrier configuration near a piezoelectric PN interface and the regulation mechanism on I-V characteristics of the junction. Nano Energy, 81, 105581 (2021) |
30 | YANG, Y., YANG, W., WANG, Y., ZENG, X., and HU, Y. A mechanically induced artificial potential barrier and its tuning mechanism on performance of piezoelectric PN junctions. Nano Energy, 92, 106741 (2022) |
31 | YANG, Y., CHEN, J., and WANG, Y. The limit tuning effects exerted by the mechanically induced artificial potential barriers on the I-V characteristics of piezoelectric PN junctions. Micromachines, 13, 2103 (2022) |
32 | WACHUTKA, G. K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9, 1141- 1149 (1990) |
33 | ADLER, M. S. Accurate calculations of the forward drop and power dissipation in thyristors. IEEE Transactions on Electron Devices, 25, 16- 22 (1978) |
34 | MINAMITANI, E. Ab initio analysis for the initial process of Joule heating in semiconductor. Physical Review B, 104, 085202 (2021) |
35 | ALFORD, T. L., MISRA, E., BHAGAT, S. K., and MAYER, J. W. Thin solid films influence of Joule heating during electromigration evaluation of silver lines. Thin Solid Films, 517, 1833- 1836 (2009) |
36 | TITOV, O. Y., VELAZQUEZ-PEREZ, J. E., and GUREVICH, Y. G. Mechanisms of the thermal electromotive force, heating and cooling in semiconductor structures. International Journal of Thermal Sciences, 92, 44- 49 (2015) |
37 | BIESHEUVEL, P. M., HAMELERS, H. V. M., and BROGIOLI, D. Negative Joule heating in ion-exchange membranes. arXiv Preprint, arXiv: 1402.1448 (2014) https://doi.org/10.48550/arXiv.1402.1448 |
38 |
ZHAO, L., GU, S., SONG, Y., and JIN, F. Transient analysis on surface heated piezoelectric semiconductor plate lying on rigid substrate. Applied Mathematics and Mechanics (English Edition), 43 (12), 1841- 1856 (2022)
doi: 10.1007/s10483-022-2927-6 |
39 | QU, Y., PAN, E., ZHU, F., JIN, F., and ROY, A. K. Modeling thermoelectric effects in piezoelectric semiconductors: new fully coupled mechanisms for mechanically manipulated heat flux and refrigeration. International Journal of Engineering Science, 182, 103775 (2023) |
40 | JIN, Z. H., and YANG, J. S. Energy conversion efficiency of a piezo-thermoelectric material. Journal of Electronic Materials, 47, 4533- 4538 (2018) |
41 | OUYANG, B., ZHANG, K., and YANG, Y. Photocurrent polarity controlled by light wavelength in self-powered ZnO nanowires/SnS photodetector system. iScience, 1, 16- 23 (2018) |
[1] | Y. ZARE, M. T. MUNIR, G. J. WENG, K. Y. RHEE. Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 663-676. |
[2] | Shuangpeng LI, Ruoran CHENG, Nannan MA, Chunli ZHANG. Analysis of piezoelectric semiconductor fibers under gradient temperature changes [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 311-320. |
[3] | Wanli YANG, Jinxi LIU, Yizhan YANG, Yuantai HU. The mechanism to reform dynamic performance of an elastic wave-front in a piezoelectric semiconductor by the wave-carrier interaction induced from static biasing fields [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 381-396. |
[4] | Y. ZARE, K. Y. RHEE. The roles of polymer-graphene interface and contact resistance among nanosheets in the effective conductivity of nanocomposites [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1941-1956. |
[5] | Changsong ZHU, Xueqian FANG, Jinxi LIU. Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1761-1776. |
[6] | Wenjun WANG, Feng JIN, Tianhu HE, Yongbin MA. Nonlinear magneto-mechanical-thermo coupling characteristic analysis for transport behaviors of carriers in composite multiferroic piezoelectric semiconductor nanoplates with surface effect [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1323-1338. |
[7] | Kai FANG, Nian LI, Peng LI, Zhenghua QIAN, V. KOLESOV, I. KUZNETSOVA. Effects of an attached functionally graded layer on the electromechanical behaviors of piezoelectric semiconductor fibers [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1367-1380. |
[8] | Yongbin WANG, Huadong YONG, Youhe ZHOU. Two-step homogenization for the effective thermal conductivities of twisted multi-filamentary superconducting strand [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 689-708. |
[9] | Luke ZHAO, Sen GU, Yaqin SONG, Feng JIN. Transient analysis on surface heated piezoelectric semiconductor plate lying on rigid substrate [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1841-1856. |
[10] | Wanli YANG, Yuxing LIANG. Typical transient effects in a piezoelectric semiconductor nanofiber under a suddenly applied axial time-dependent force [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1095-1108. |
[11] | T. MUSHTAQ, A. RAUF, S. A. SHEHZAD, F. MUSTAFA, M. HANIF, Z. ABBAS. Numerical and statistical approach for Casson-Maxwell nanofluid flow with Cattaneo-Christov theory [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 1063-1076. |
[12] | Shuaiqi FAN, Ziguang CHEN. Electric potential and energy band in ZnO nanofiber tuned by local mechanical loading [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(6): 787-804. |
[13] | K. LOTFY, A. K. KHAMIS, A. A. EL-BARY, M. H. AHMED. Thomson and rotation effects during photothermal excitation process in magnetic semiconductor medium using variable thermal conductivity [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(6): 909-926. |
[14] | S. M. SAID. Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 819-832. |
[15] | A. M. MEGAHED. Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(11): 1615-1624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||