1 |
MORENO, N., and ELLERO, M. Generalized Lagrangian heterogenous multiscale modeling of complex fluids. Journal of Fluid Mechanics, 969, A2 (2023)
|
2 |
LEE, J., YOON, S., KWON, Y., and KIM, S. Practical comparison of differential viscoelastic constitutive equations in finite element analysis of planar 4: 1 contraction flow. Rheologica Acta, 44, 188- 197 (2004)
|
3 |
ZHUANG, X., OUYANG, J., LI, W., and LI, Y. Three-dimensional simulations of non-isothermal transient flow and flow-induced stresses during the viscoelastic fluid filling process. International Journal of Heat and Mass Transfer, 104, 374- 391 (2017)
|
4 |
FAVERO, J. L., SECCHI, A. R., CARDOZO, N. S. M., and JASAK, H. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. Journal of Non-Newtonian Fluid Mechanics, 165 (23-24), 1625- 1636 (2010)
|
5 |
ANAND, M., and RAJAGOPAL, K. R. A shear-thinning viscoelastic fluid model for describing the flow of blood. International Journal of Cardiovascular Medicine and Science, 4 (2), 59- 68 (2004)
|
6 |
JAVID, K., KOLSI, L., AI-KHALED, K., OMRI, M., KHAN, S., and ABBASI, A. Biomimetic propulsion of viscoelastic nanoparticles in a curved pump with curvature and slip effects: blood control bio-medical applications. Waves in Random and Complex Media, (2022)
doi: 10.1080/17455030.2022.2028934
|
7 |
CLAUSEN, T. M., VINSON, P. K., MINTER, J. R., DAVIS, H. T., TALMON, Y., and MILLER, W. G. Viscoelastic micellar solutions: microscopy and rheology. The Journal of Physical Chemistry, 96 (1), 474- 484 (1992)
|
8 |
BALASUBRAMANIAN, S., KAUSHIK, P., and MONDAL, P. K. Dynamics of viscoelastic fluid in a rotating soft microchannel. Physics of Fluids, 32 (11), 112003 (2020)
|
9 |
AN, S., TIAN, K., DING, Z., and JIAN, Y. Electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids in a microchannel. Applied Mathematics and Mechanics (English Edition), 43 (6), 917- 930 (2022)
doi: 10.1007/s10483-022-2882-7
|
10 |
EENGQUIST, B., LI, X., REN, W., and VANDEN-EIJNDEN, E. Heterogeneous multiscale methods: a review. Communications in Computational Physics, 2 (3), 367- 450 (2007)
|
11 |
E, W. N, REN, W., and VANDEN-EIJDEN, E. A general strategy for designing seamless multiscale methods. Journal of Computational Physics, 228 (15), 5437- 5453 (2009)
|
12 |
BORG, M. K., LOCKERBY, D. A., and REESE, J. M. A hybrid molecular-continuum method for unsteady compressible multiscale flows. Journal of Fluid Mechanics, 768, 388- 414 (2015)
|
13 |
MORENO, N., VIGNAL, P., LI, J., and CALO, V. M. Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics. Procedia Computer Science, 18, 2565- 2574 (2013)
|
14 |
LOCKERBY, D. A., DUQUE-DAZA, C. A., BORG, M. K., and REESE, J. M. Time-step coupling for hybrid simulations of multiscale flows. Journal of Computational Physics, 237, 344- 365 (2013)
|
15 |
BIAN, X., LITVINOV, S., QIAN, R., ELLERO, M., and ADAMS, N. A. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Physics of Fluids, 24 (1), 012002 (2012)
|
16 |
INGELSTEN, S., MARK, A., KADAR, R., and EDELVIK, F. A backwards-tracking Lagrangian-Eulerian method for viscoelastic two-fluid flows. Applied Science, 11 (1), 439 (2021)
|
17 |
KULKARNI, P. M., FU, C. C., SHELL, M. S., and LEAL, L. G. Multiscale modeling with smoothed dissipative particle dynamics. The Journal of Chemical Physics, 138, 234105 (2013)
|
18 |
MULLER, K., FEDOSOV, D. A., and GOMPPER, G. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Scientific Reports, 4 (1), 4871 (2014)
|
19 |
MURASHIMA, T., and TANIGUCHI, T. Multiscale Lagrangian fluid dynamics simulation for polymeric fluid. Journal of Polymer Science, Part B: Polymer Physics, 48 (8), 886- 893 (2010)
|
20 |
MORII, Y., and KAWAKATSU, T. Lagrangian multiscale simulation of complex flows. Physics of Fluids, 33 (9), 093106 (2021)
|
21 |
XU, Y., ZHU, J., ZHENG, L., and SI, X. Non-Newtonian biomagnetic fluid flow through a stenosed bifurcated artery with a slip boundary condition. Applied Mathematics and Mechanics (English Edition), 41 (11), 1611- 1630 (2020)
doi: 10.1007/s10483-020-2657-9
|
22 |
QIAO, Y., WANG, X., XU, H., and QI, H. Numerical analysis for viscoelastic fluid flow with distributed/variable order time fractional Maxwell constitutive models. Applied Mathematics and Mechanics (English Edition), 42 (12), 1771- 1786 (2021)
doi: 10.1007/s10483-021-2796-8
|
23 |
REN, J., OUYANG, J., and JIANG, T. An improved particle method for simulation of the non-isothermal viscoelastic fluid mold filling process. International Journal of Heat and Mass Transfer, 85, 543- 560 (2015)
|
24 |
THOMAS, J. C., and ROWLEY, R. L. Transient molecular dynamics simulations of viscosity for simple fluids. The Journal of Chemical Physics, 127, 174510 (2007)
|
25 |
KHAN, M. B., SASMAL, C., and CHHABRA, R. P. Flow and heat transfer characteristics of a rotating cylinder in a FENE-P type viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 282, 104333 (2020)
|
26 |
FENG, H., ANDREEV, M., PILYUGINA, E., and SCHIEBER, J. D. Smoothed particle hydrodynamics simulation of viscoelastic flows with the slip-link model. Molecular Systems Design and Engineering, 1 (1), 99- 108 (2016)
|
27 |
TANG, Y. H., KUDO, S., BIAN, X., LI, Z., and KARNIADAKIS, G. E. Multiscale universal interface: a concurrent framework for coupling heterogeneous solvers. Journal of Computational Physics, 297, 13- 31 (2015)
|
28 |
LIU, G. R. and LIU, M. B. Smoothed Particle Hydrodynamics: a Mesh-free Particle Method, World Scientific, Singapore (2003)
|
29 |
JIANG, T., REN, J., YUAN, J., ZHOU, W., and WANG, D. S. A least-squares particle model with other techniques for 2D viscoelastic fluid/free surface flow. Journal of Computational Physics, 407, 109255 (2020)
|
30 |
HAYAT, T., KHAN, M., and AYUB, M. Exact solution of flow problems of an Oldroyd-B fluid. Applied Mathematics and Computation, 151 (1), 105- 119 (2004)
|
31 |
BIAN, X., LI, Z., and KARNIADAKIS, G. E. Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition. Journal of Computational Physics, 297, 132- 155 (2015)
|
32 |
SU, J., OUYANG, J., WANG, X., and YANG, B. Lattice Boltzmann method coupled with the Oldroyd-B constitutive model for a viscoelastic fluid. Physical Review E, 88 (5), 053304 (2013)
|
33 |
PARUSSINI, L., and PEDIRODA, V. Fictitious domain approach with hp-finite element approximation for incompressible fluid flow. Journal of Computational Physics, 228 (10), 3891- 3910 (2009)
|