[1] Landau, L. D. and Lifshitz, E. M. Fluid Mechanics. Vol. 6 Course of Theoretical Physics, Pergamon Press, Oxford (1959) [2] Batchelor, G. K. An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (1967) [3] Noid, W. G. Perspective:coarse-grained models for biomolecular systems. Journal of Chemical Physics, 139(9), 090901(2013) [4] Succi, S. The lattice Boltzmann equation:for fluid dynamics and beyond. Numerical Mathematics and Scientific Computations, Oxford University Press, Oxford (2001) [5] Dünweg, B. and Ladd, A. J. C. Lattice Boltzmann Simulations of Soft Matter Systems. Advanced Computer Simulation Approaches for Soft Matter Sciences Ⅲ (eds. Holm, C. and Kremer, K.), Volume 221 of Advances in Polymer Science, Springer Berlin Heidelberg, Berlin, 89-166(2009) [6] Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19(3), 155-160(1992) [7] Español, P. and Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30(4), 191-196(1995) [8] Malevanets, A. and Kapral, R. Mesoscopic model for solvent dynamics. Journal of Chemical Physics, 110(17), 8605-8613(1999) [9] Gompper, G., Ihle, T., Kroll, D. M., and Winkler, R. G. Multi-particle collision dynamics:a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Advanced Computer Simulation Approaches for Soft Matter Sciences Ⅲ (eds. Holm, C. and Kremer, K.) volume 221 of Advances in Polymer Science, Springer Berlin Heidelberg, Berlin, 1-87(2009) [10] Lyubartsev, A. P. and Laaksonen, A. Calculation of effective interaction potentials from radial distribution functions:a reverse monte carlo approach. Physical Review E, 52, 3730-3737(1995) [11] Reith, D., Pütz, M., and Müller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations. Journal of Computational Chemistry, 24(13), 1624-1636(2003) [12] Ercolessi, F. and Adams, J. B. Interatomic potentials from first-principles calculations:the forcematching method. Europhysics Letters, 26(8), 9306054(1994) [13] Izvekov, S. and Voth, G. A. Multiscale coarse graining of liquid-state systems. Journal of Chemical Physics, 123(13), 134105(2005) [14] Shell, M. S. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. Journal of Chemical Physics, 129(14), 144108(2008) [15] Zwanzig, R. Ensemble method in the theory of irreversibility. Journal of Chemical Physics, 33(5), 1338-1341(1960) [16] Mori, H. Transport, collective motion, and Brownian motion. Progress of Theoretical Physics, 33, 423-455(1965) [17] Koelman, J. M. V. A. and Hoogerbrugge, P. J. Dynamic simulations of hard-sphere suspensions under steady shear. Europhysics Letters, 21, 363-368(1993) [18] Groot, R. D. and Warren, P. B. Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 107(11), 4423-4435(1997) [19] Yamamoto, S., Maruyama, Y., and Hyodo, S. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. Journal of Chemical Physics, 116(13), 5842-5849(2002) [20] Fan, X., Phan-Thien, N., Yong, N. T., Wu, X., and Xu, D. Microchannel flow of a macromolecular suspension. Physics of Fluids, 15, 11-21(2003) [21] Pivkin, I. V. and Karniadakis, G. E. Accurate coarse-grained modeling of red blood cells. Physical Review Letters, 101, 118105(2008) [22] Fedosov, D. A., Caswell, B., and Karniadakis, G. E. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophysical Journal, 98, 2215-2225(2010) [23] Español, P. and Warren, P. B. Perspective:dissipative particle dynamics. Journal of Chemical Physics, 146(15), 150901(2017) [24] Li, Z., Li, X., Bian, X., Deng, M., Tang, Y. H., Caswell, B., and Karniadakis, G. E. Dissipative particle dynamics:foundation, evolution, implementation, and applications. Particles in Flows, Springer, Berlin (2017) [25] Kinjo, T. and Hyodo, S. Equation of motion for coarse-grained simulation based on microscopic description. Physical Review E, 75, 051109(2007) [26] Lei, H., Caswell, B., and Karniadakis, G. E. Direct construction of mesoscopic models from microscopic simulations. Physical Review E, 81, 026704(2010) [27] Hijón, C., Español, P., Vanden-Eijnden, E., and Delgado-Buscalioni, R. Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss, 144, 301-322(2010) [28] Li, Z., Bian, X. Caswell, B., and Karniadakis, G. E. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Soft Matter, 10, 8659-8672(2014) [29] Español, P. and Revenga, M. Smoothed dissipative particle dynamics. Physical Review E, 67(2), 026705(2003) [30] Vázquez-Quesada, A., Ellero, M., and Español, P. Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Physical Review E, 79(5), 056707(2009) [31] Marsh, C. A., Backx, G., and Ernst, M. H. Fokker-Planck-Boltzmann equation for dissipative particle dynamics. Europhysical Letters, 38(6), 411-415(1997) [32] Español, P. Hydrodynamics from dissipative particle dynamics. Physical Review E, 52(2), 1734-1742(1995) [33] Ripoll, M., Ernst, M. H., and Español, P. Large scale and mesoscopic hydrodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115, 7271-7284(2001) [34] Bian, X., Li, Z., Deng, M., and Karniadakis, G. E. Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains:thermal equilibrium. Physical Review E, 92, 053302(2015) [35] Azarnykh, D., Litvinov, S., Bian, X., and Adams, N. A. Determination of macroscopic transport coefficients of a dissipative particle dynamics solvent. Physical Review E, 93, 013302(2016) [36] Vázquez-Quesada, A., Ellero, M., and Español, P. Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. Journal of Chemical Physics, 130(3), 034901(2009) [37] Hansen, J. P. and McDonald, I. R. Theory of Simple Liquids, 4th ed., Elsevier, Burlington (2013) [38] Boon, J. P. and Yip, S. Molecular Hydrodynamics, Dover Publications, New York (1991) [39] Zwanzig, R. Memory effects in irreversible thermodynamics. Physical Review, 124, 983-992(1961) [40] Kawasaki, K. Simple derivations of generalized linear and nonlinear Langevin equations. Journal of Physics A:Mathematical Nuclear and General, 6, 1289-1295(1973) [41] Nordholm, S. and Zwanzig, R. A systematic derivation of exact generalized Brownian motion theory. Journal of Statistical Physics, 13(4), 347-371(1975) [42] Weeks, J. D., Chandler, D., and Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. Journal of Chemical Physics, 54(12), 5237-5247(1971) [43] Kremer, K. and Grest, G. S. Dynamics of entangled linear polymer melts:a molecular-dynamics simulation. Journal of Chemical Physics, 92(8), 5057-5086(1990) [44] Tuckerman, M. E. Statistical Mechanics:Theory and Molecular Simulation, Oxford University Press, Oxford (2010) [45] Backer, J. A., Lowe, C. P., Hoefsloot, H. C. J., and Iedema, P. D. Poiseuille flow to measure the viscosity of particle model fluids. Journal of Chemical Physics, 122, 154503(2005) [46] Li, Z., Bian, X., Yang, X., and Karniadakis, G. E. A comparative study of coarse-graining methods for polymeric fluids:Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization. Journal of Chemical Physics, 145(4), 044102(2016) [47] Lei, H., Yang, X., Li, Z., and Karniadakis, G. E. Systematic parameter inference in stochastic mesoscopic modeling. Journal of Computational Physics, 330, 571-593(2017) [48] Kirkwood, J. G. The statistical mechanical theory of transport processes, i. general theory. Journal of Chemical Physics, 14(3), 180-201(1946) [49] Berne, B. J. and Pecora, R. Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics, Dover Publications, New York (2000) [50] Español, P. Fluid particle model. Physical Review E, 57(3), 2930-2948(1998) [51] Berne, B. J. Statistical Mechanics, Part B:Time-dependet Process, chapter 5, Plenum Press, New York, 233-257(1977) [52] Kreyszig, E. Advanced Engineering Mathematics, 10th ed., John Wiley & Sons, Hoboken (2011) [53] Palmer, B. J. Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. Physical Review E, 49, 359-366(1994) [54] Li, Z., Bian, X., Li, X., and Karniadakis, G. E. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. Journal of Chemical Physics, 143(24), 243128(2015) [55] Li, Z., Lee, H., Darve, E., and Karniadakis, G. E. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems:application to polymer melts. Journal of Chemical Physics, 146, 014104(2017) [56] Lei, H., Baker, N. A., and Li, X. Data-driven parameterization of the generalized Langevin equation. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14183-14188(2016) |